Technical Report: Predicting future attacks
Data analysis of Dshield data set

. INTRODUCTION seen from a single IP prefix. However, since there is no

In this report we analyzed 6 months of Dshield logs fror}pformat_ion on th_e specific reasons ale_zrts were raise(_j, a dat
May 2008 to October 2008 [1]. The goal of this analysis is tget.of this nature is also |nh.erently subjgct to errors anseno
gain insight into spatial-temporal characteristics ofimialis fOr instance, due to NIDS misconfigurations and false alétts
IP sources as observed by multiple “sensor” points (netajorkhe extreme case, a malicious user could potentially siligscr
over the Internet. We observed, analyzed and correlated rifaDshield and submit fake reports with the only purpose of
licious activities originated from hundreds of millionssifo POiSOning the entire database (poisoning attack). As obser
improve early detection and characterization of cooreidat" [1], the amount of noisy data can be considerably reduced
attacks (e.g. botnets). Ideally, we would like to able teefilt Py appropriately pre-processing the logs. However, evés) th
out or counteract attacks at a very early stage or even befBfg-Processing step can not completely eliminate all @was

they begin. entries. As a consequence, we observe that, any algoritaim th
uses this type of data set must be designed to be robust tp nois
Il. DATA SET DESCRIPTION data.
A. Data Format

] ) B. Data set overview
In this report we analyzed 6 months of Dshield logs [1].

Dshield is repository of network security logs collectednir Fig.1 gnd _Fig.l show the nu_mber of logs analyzed, source
over 600 different networks located all over the Internel”S: destination IPs, and contributor IDs per every dayhin t
Every Dshield contributor (subscriber) submit the follogi time period considered there was a stream of 10 to 20 millions

informations every time an alert is raised by its networl9S Per day, contributed by about 600 different networks.
intrusion and detection system (NIDS) [2]: We observe that, every day, there are about 200,000 differen

destination IPs and about 800,000 different source IPs.

time
contributorlD
src IP
src port
dst IP
dst port
protocollD
flags (optional)
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TABLE |
DSHIELD FORMAT [2]
Fig. 1. Number of Dshield logs per day

where,t i ne is the time stamp when the alert was raised,
contri butorl Dis a unique identifier for the contributing
network,sr cl P anddst | P denote respectively the source
and the target (destination) IP addrgssrc port and
dst port represent the source and the target port respec-
tively, pr ot ocol I D indicates the protocol used (when this
information is available) and, finally,| ags specifies the TCP
flags (when available).

Network security logs submitted to Dshield are indepen-
dently compiled at each contributing network. The Dshield
data set offers a broad view of malicious traffic on the Ingern
as detected by hundreds of different networks. In this sense
it is a richer data set than having only the malicious course

Fig. 2. Number of unique: source IPs, destination (tardes)dnd contributors
1we note that whenever a contributing network does not wangveal the per day

destination IP, it can partially or fully obfuscate it as désed in [2]
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Fig. 3. Pairs (source IP, destination IP) for a single day day
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Fig. 4. Pairs (source IP, destination IP) for two differeaysl

Fig. 5. Pairs (source IP, destination IP) for seven aggeegdays

Fig.3, Fig.4 and Fig.5 show the distribution of pairs, (s®ur

IP, destination IP) over different time periods: one dayp tw

different days and 7 aggregated days, respectively. Alréigu

show some common patterns: there are both horizontal and

vertical gaps, as well as horizontal and vertical areas watty

high density. Gaps are mainly due to the following reasons:
i) the set of Dshield contributors represents just a sargplin
of the Internet malicious activities: we do not have conmlet

information; ii) some IP ranges are reserved/assignedéus h
very little usage, while some other are still unassigned. Fo
instance, we can clearly see gaps corresponding to prefixes
224.0.0.0/3, 176.0.0.0/5, 100.0.0.0/6, 104.0.0.0/6, sman,
which are known to be unassigned IP prefixes [5]; we also
observe that the first 64 class A networks, which are mainly
assigned to US military, governmental organizations,ddiy
companies, appear to have fewer IP sources of malicioditraf
than the rest of the IP space.

In Fig.4, we compare the location of pairs, (source IP,
destination IP), for two different days. We observe that, at
a large granularity, we have two very similar configurations
However, at finer granularities the two set of points differ
substantially. In some cases, new IPs are within the same
source subnet are a previously-seen malicious IP; thikedyli
due to the use of DHCP, which would allow the same machine
to appear at different times with different IPs. In otheresas
new IPs belong to previously-unseen network subsets. Hms c
be explained considering the large number of compromised
machines controlled by criminal groups. This gives them the
luxury of swapping the use of different subsets of the botnet
to elude traditional defense mechanism based on blacklists
single IPs.

We also derive the country location of both source and
destination IPs: in our dataset the majority of destinati®s
are located in Thailand (43.6%), US (40.5%), EU (9.9%).
Source IPs are mainly are located in: Thailand (41.3%), US
(17.2%), and China (13.1%).

C. Temporal analysis

We studied the temporal dynamics of malicious source IPs.
The main findings can be summarized as:

o IPs that attack multiple times do it within few minutes.
In fact, we observe that either an IP attack only once or,
if it attacks multiple times, consecutive attacks are very
likely to happen within 3 to 10 minutes from one other.
Fig.6 shows the CDF of consecutive attack time from
the same source IP. About 90% of consecutive attacks
happen within 3 minutes from each other. While a little
percentage, 5%, are separated by several hours.

This observation is straighten when looking at subnets
behavior. Fig.7 shows that 95% of consecutive attacks
happen from the same source subnet happen within 4 to
5 minutes.

Single IPs are usually not active for more than 1-3
consecutive days .

Fig.8 represents the histogram of consecutive blacklisted
period for single IPs for the month of October. We make
two main observation: i) as aforementioned, the large
majority of IPs are active only 1 to 3 days; ii) a small
fraction of IPs are continuously active for several days,
up to the entire period of observation. This is particularly
interesting also because, we will see, there is a direct
correlation between the active time, and the number of
attacks sent.
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Fig. 6. Interarrival time of attacks from the same source IP
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Fig. 7. Interarrival time of attacks from the same sourcenstib

Surprisingly, at the subnet level the situation is much
_ different: 3,805 subnets appear in October both as source
Fig.9 analyzes the number of IPs that are reported g8 as destination, out of 126,949 source subnets, and 4,070
malicious both day: and on dayx + At, where At is  gestination subnets. This implies that, in about one month,
measured in days. The number of IPs that are reportedjfyost all destination subnets eventually generate tréftit
two consecutive days is abol&%. This is a quite small js cjassified as malicious. This might be due, for instange, t
number and it decreases rapidly o- 6% in 3 days. \yorms that successfully infected a contributing networkl an

However, as observed in the previous figure, there isf@ym there, try to keep on spreading to a different network on
small fraction of IPs, 4%, that is continuously reportedhe |nternet.

as malicious. 1) Fanout: In this section we study the distribution of out-

degrees of nodes in the graph, i.e. the number of destirgtion
D. Graph attacked by single IP/subnet.

In this section we interpret our data set as a graph, in whichWe observed that, the large majority of IPs attack only
nodes are IPs and there is an edge from nedé noden,, one destination (Fig.10). This mean that, in order to have an
if and only if, there is a log in the data set that hasas accurate prediction on future attacks, not only is fundawaden
source IP andw, as destination IP. In this section we studyo explore the correlation between attacks on differentiles
some basic properties of this graph. tions but we must also account for the past history of attacks

Per every single day, at the IP granularity, the graph is welf every contributor individually.
approximated by a bi-partite graph. There are, on averageContrary to individual IPs, subnets are more likely to dtac
only 221 out of 800,000 different IPs that, in the same damultiple contributors (Fig.11. This is probably due to orfe o
appear both as source and as destination IP in the Dshitlld following reasons: hosts within the same subnet might
logs. Aggregating all days in October, the number of IPs thhe infected with different malicious code (e.g. they belong
are both source and destination is still quite limited: 3983 to different botnets), or they might be controlled by the sam
are both source and destination in October, out of 14,00Q0,0éntity which split its resource to target multiple destioas,
different source IPs. finally it is possible that the same machine target different
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attackers between two contributors (i.e. the number of IPs
that attack both contributors) varies when consideringy onl
the contributors that provide a number of logs greater oakequ
to a certain threshold. When all contributors are consitlere
the average percentage of common attackers is about 62%.
However, this is due to small contributors that share a large
percentage of their attackers with other contributing roeks.
When we consider only contributors that provide at least
100 attacks logs, the average percentage of common atsacker
drops to 44%. This is still a very high number which shows
that coordinated attacks by the same sources to the differen
destination is not a negligible phenomenon.

Fig.14 highlights the fact the when there are shared atfacks
those also happens at about the same time. In order words,
when a source IP attacks multiple destinations it is likely t
attack them at about the same time. A possible scenario that
1 W a0 10 explains these findings is the one in which a botmaster decide

to attacks several networks. In this case, all bots cooteléna
attack, probably in an order decided by an hit list, the vwasio
targets. This also confirm previous findings [6].

Fig. 10. CDF of the number of contributor attacked by a sirl§le
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Fig. 11. CDF of the number of contributor attacked by a sirsglbnet

2) Fan in: Fig.12 shows that about 50% of contributors
provides 100-1000 attack reports. 10% of contributors have
less then 10 attacks, while the largest contributor reports
500.000 attacks per day. On the one hand, there are two *r
very large contributors which account for 60% of all data
set; on the other hand, there few contributors that report
very few attacks. This can be caused both by the attackers’
behavior (e.g. depending on the type of services/software
ran a target network can be more or less attractive from an
attacker’s perspective), and on the contributor’'s behaeq.

a misconfigured firewall can raise a significantly larger namb
of alarms than the actual attacks.
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E. Common Attackers

In this section we go in further details analyzing the Fig. 13. Common attackers vs Threshold on total number atlegt
correlation between attacks. In particular, we study thewm
of common attackers, i.e. IP prefixes that attack a group of In Fig.15 and Fig.16 show the average numbemeigh-
contributing networks. bors, i.e. networks that shares common attackers with another



45

401

351

30

25F

201

% of common attackers

15

Avg. Number of Neighbors

101

L L L L L L L L
0 100 200 300 400 500 700 800 900 1000

600
threshold on tot # attacks

idiiiii PR I
10! 10°
Number of Common Attackers

Fig. 14. Common attackers (within 10 minutes) vs Threshaltbtal number
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Fig. 16. Average number of neighbors vs number of commorcksta (5
aggregate days)
network, for one and five aggregated days, respectivelylbig
for instance, show that, for a single day, we can cluster I Empirical COF
contributors in clusters of size 6 considering as neighbors | = @ o0
pairs of contributors that share at least 40 common sourge 1P os|....0..
per day. oabodnd
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Fig. 17. CDF of common attackers with the closest neighbaaa()
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Fig. 15. Average number of neighbors vs Number of commorclketa (1
day)

In Fig.17 and Fig.18 we analyzed the common attackers _ _
between each contributing network and @ssest neighbor, 52;1.8)18. CDF of common attackers with the closest neighboaggregate
i.e. the contributor with whom it shares the largest number’
of common attackers. Most networks shares 20-60 common
attackers (single IPs); however, we also observe bothrexse
cases: networks with less then 5 shared source IPs dR§ attacking several contributors tend in general to predu

networks with thousands of shared attackers. attacks of longer duration. .
A similar trend can be observed when correlating the

F. Correlation between attacks volume, duration and fan-out.  qyration of the attack with its volume, Fig.20.
In these section we analyze the correlation between theA less intuitive figure is the one relating the fan-out of
attack volume, duration, and fan-out of the attackers. attackers with its volume. While intuitively one could expe
Fig.19 shows an interesting correlation between the fan dbese two metric to be simply directly proportional to each
of attackers and the duration of the attacks: IPs that attaakher, when analyzing the data we actually observe all kind o
one or few contributors tend to attack for a short time, whildifferent behaviors, Fig.21 and Fig.22



Fig. 20. Volume vs duration (days)

Fig.21 vaguely suggest a linear trend between volume
and fan-out. However, a more careful inspection of the data
highlight that several different behaviors, Fig.22: for npa
networks there seems to be a quadratic dependence of the
volume on the fan-out; but we also observe different kind
of extreme behavior: attackers with high volume focuses on
few, or one, contributors as well as attackers with low vaum
but large fan out (low frequency attacks). It is possiblet tha
separating these data, for instance according to the theedf/p
attack, will help us to see these different behaviors cteste
in few categories.

In conclusion, is it possible to spot attackers with large fa
out, large volume, and large duration. However, there are se
of attacker that have only two, or one, of thee properties.
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Fig. 21. Volume vs fan-out (log-log scale)

Fig. 22.  Volume vs fan-out (lin-lin scale)



