
Technical Report: Predicting future attacks
Data analysis of Dshield data set

I. I NTRODUCTION

In this report we analyzed 6 months of Dshield logs from
May 2008 to October 2008 [1]. The goal of this analysis is to
gain insight into spatial-temporal characteristics of malicious
IP sources as observed by multiple “sensor” points (networks)
over the Internet. We observed, analyzed and correlated ma-
licious activities originated from hundreds of millions IPs to
improve early detection and characterization of coordinated
attacks (e.g. botnets). Ideally, we would like to able to filter
out or counteract attacks at a very early stage or even before
they begin.

II. DATA SET DESCRIPTION

A. Data Format

In this report we analyzed 6 months of Dshield logs [1].
Dshield is repository of network security logs collected from
over 600 different networks located all over the Internet.
Every Dshield contributor (subscriber) submit the following
informations every time an alert is raised by its network
intrusion and detection system (NIDS) [2]:

time
contributorID

src IP
src port
dst IP

dst port
protocolID

flags (optional)

TABLE I
DSHIELD FORMAT [2]

where,time is the time stamp when the alert was raised,
contributorID is a unique identifier for the contributing
network,srcIP and dstIP denote respectively the source
and the target (destination) IP address1, src port and
dst port represent the source and the target port respec-
tively, protocolID indicates the protocol used (when this
information is available) and, finally,flags specifies the TCP
flags (when available).

Network security logs submitted to Dshield are indepen-
dently compiled at each contributing network. The Dshield
data set offers a broad view of malicious traffic on the Internet
as detected by hundreds of different networks. In this sense,
it is a richer data set than having only the malicious course

1we note that whenever a contributing network does not want toreveal the
destination IP, it can partially or fully obfuscate it as described in [2]

seen from a single IP prefix. However, since there is no
information on the specific reasons alerts were raised, a data
set of this nature is also inherently subject to errors and noise,
for instance, due to NIDS misconfigurations and false alerts. In
the extreme case, a malicious user could potentially subscribe
to Dshield and submit fake reports with the only purpose of
poisoning the entire database (poisoning attack). As observed
in [1], the amount of noisy data can be considerably reduced
by appropriately pre-processing the logs. However, even this
pre-processing step can not completely eliminate all erroneous
entries. As a consequence, we observe that, any algorithm that
uses this type of data set must be designed to be robust to noisy
data.

B. Data set overview

Fig.1 and Fig.1 show the number of logs analyzed, source
IPs, destination IPs, and contributor IDs per every day. In the
time period considered there was a stream of 10 to 20 millions
logs per day, contributed by about 600 different networks.
We observe that, every day, there are about 200,000 different
destination IPs and about 800,000 different source IPs.
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Fig. 1. Number of Dshield logs per day
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Fig. 3. Pairs (source IP, destination IP) for a single day day

Fig. 4. Pairs (source IP, destination IP) for two different days

Fig. 5. Pairs (source IP, destination IP) for seven aggregated days

Fig.3, Fig.4 and Fig.5 show the distribution of pairs, (source
IP, destination IP) over different time periods: one day, two
different days and 7 aggregated days, respectively. All figures
show some common patterns: there are both horizontal and
vertical gaps, as well as horizontal and vertical areas withvery
high density. Gaps are mainly due to the following reasons:
i) the set of Dshield contributors represents just a sampling
of the Internet malicious activities: we do not have complete

information; ii) some IP ranges are reserved/assigned but have
very little usage, while some other are still unassigned. For
instance, we can clearly see gaps corresponding to prefixes
224.0.0.0/3, 176.0.0.0/5, 100.0.0.0/6, 104.0.0.0/6, andso on,
which are known to be unassigned IP prefixes [5]; we also
observe that the first 64 class A networks, which are mainly
assigned to US military, governmental organizations, large IT
companies, appear to have fewer IP sources of malicious traffic
than the rest of the IP space.

In Fig.4, we compare the location of pairs, (source IP,
destination IP), for two different days. We observe that, at
a large granularity, we have two very similar configurations.
However, at finer granularities the two set of points differ
substantially. In some cases, new IPs are within the same
source subnet are a previously-seen malicious IP; this is likely
due to the use of DHCP, which would allow the same machine
to appear at different times with different IPs. In other cases,
new IPs belong to previously-unseen network subsets. This can
be explained considering the large number of compromised
machines controlled by criminal groups. This gives them the
luxury of swapping the use of different subsets of the botnet
to elude traditional defense mechanism based on blacklistsof
single IPs.

We also derive the country location of both source and
destination IPs: in our dataset the majority of destinationIPs
are located in Thailand (43.6%), US (40.5%), EU (9.9%).
Source IPs are mainly are located in: Thailand (41.3%), US
(17.2%), and China (13.1%).

C. Temporal analysis

We studied the temporal dynamics of malicious source IPs.
The main findings can be summarized as:

• IPs that attack multiple times do it within few minutes.
In fact, we observe that either an IP attack only once or,
if it attacks multiple times, consecutive attacks are very
likely to happen within 3 to 10 minutes from one other.
Fig.6 shows the CDF of consecutive attack time from
the same source IP. About 90% of consecutive attacks
happen within 3 minutes from each other. While a little
percentage, 5%, are separated by several hours.
This observation is straighten when looking at subnets
behavior. Fig.7 shows that 95% of consecutive attacks
happen from the same source subnet happen within 4 to
5 minutes.

• Single IPs are usually not active for more than 1-3
consecutive days .
Fig.8 represents the histogram of consecutive blacklisted
period for single IPs for the month of October. We make
two main observation: i) as aforementioned, the large
majority of IPs are active only 1 to 3 days; ii) a small
fraction of IPs are continuously active for several days,
up to the entire period of observation. This is particularly
interesting also because, we will see, there is a direct
correlation between the active time, and the number of
attacks sent.
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Fig. 6. Interarrival time of attacks from the same source IP

Fig. 7. Interarrival time of attacks from the same source subnet

Fig.9 analyzes the number of IPs that are reported as
malicious both dayx and on dayx + ∆t, where∆t is
measured in days. The number of IPs that are reported in
two consecutive days is about13%. This is a quite small
number and it decreases rapidly to8 − 6% in 3 days.
However, as observed in the previous figure, there is a
small fraction of IPs, 4%, that is continuously reported
as malicious.

D. Graph

In this section we interpret our data set as a graph, in which
nodes are IPs and there is an edge from noden1 to noden2,
if and only if, there is a log in the data set that hasn1 as
source IP andn2 as destination IP. In this section we study
some basic properties of this graph.

Per every single day, at the IP granularity, the graph is well
approximated by a bi-partite graph. There are, on average,
only 221 out of 800,000 different IPs that, in the same day,
appear both as source and as destination IP in the Dshield
logs. Aggregating all days in October, the number of IPs that
are both source and destination is still quite limited: 3957IPs
are both source and destination in October, out of 14,000,000
different source IPs.

Fig. 8. Consecutive blacklisted time
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Fig. 9. Percentage of IP blacklisted both in day X and at day X+∆T

Surprisingly, at the subnet level the situation is much
different: 3,805 subnets appear in October both as source
and as destination, out of 126,949 source subnets, and 4,070
destination subnets. This implies that, in about one month,
almost all destination subnets eventually generate trafficthat
is classified as malicious. This might be due, for instance, to
worms that successfully infected a contributing network and
from there, try to keep on spreading to a different network on
the Internet.

1) Fan out: In this section we study the distribution of out-
degrees of nodes in the graph, i.e. the number of destinations
attacked by single IP/subnet.

We observed that, the large majority of IPs attack only
one destination (Fig.10). This mean that, in order to have an
accurate prediction on future attacks, not only is fundamental
to explore the correlation between attacks on different destina-
tions but we must also account for the past history of attacks
of every contributor individually.

Contrary to individual IPs, subnets are more likely to attack
multiple contributors (Fig.11. This is probably due to one of
the following reasons: hosts within the same subnet might
be infected with different malicious code (e.g. they belong
to different botnets), or they might be controlled by the same
entity which split its resource to target multiple destinations,
finally it is possible that the same machine target different
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network in different days using a different IP source at each
time due to DHCP re-assignement. It is possible that analyzing
the time of the attacks will help us to discriminate between
these cases.
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Fig. 10. CDF of the number of contributor attacked by a singleIP
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Fig. 11. CDF of the number of contributor attacked by a singlesubnet

2) Fan in: Fig.12 shows that about 50% of contributors
provides 100-1000 attack reports. 10% of contributors have
less then 10 attacks, while the largest contributor reports
500.000 attacks per day. On the one hand, there are two
very large contributors which account for 60% of all data
set; on the other hand, there few contributors that report
very few attacks. This can be caused both by the attackers’
behavior (e.g. depending on the type of services/software
ran a target network can be more or less attractive from an
attacker’s perspective), and on the contributor’s behavior: e.g.
a misconfigured firewall can raise a significantly larger number
of alarms than the actual attacks.

E. Common Attackers

In this section we go in further details analyzing the
correlation between attacks. In particular, we study the amount
of common attackers, i.e. IP prefixes that attack a group of
contributing networks.

Fig. 12. CDF of the number of attackers per single contributor

Fig.13 shows how the average percentage of common
attackers between two contributors (i.e. the number of IPs
that attack both contributors) varies when considering only
the contributors that provide a number of logs greater or equal
to a certain threshold. When all contributors are considered,
the average percentage of common attackers is about 62%.
However, this is due to small contributors that share a large
percentage of their attackers with other contributing networks.
When we consider only contributors that provide at least
100 attacks logs, the average percentage of common attackers
drops to 44%. This is still a very high number which shows
that coordinated attacks by the same sources to the different
destination is not a negligible phenomenon.

Fig.14 highlights the fact the when there are shared attacks,
those also happens at about the same time. In order words,
when a source IP attacks multiple destinations it is likely to
attack them at about the same time. A possible scenario that
explains these findings is the one in which a botmaster decides
to attacks several networks. In this case, all bots coordinates to
attack, probably in an order decided by an hit list, the various
targets. This also confirm previous findings [6].
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Fig. 13. Common attackers vs Threshold on total number of attacks

In Fig.15 and Fig.16 show the average number ofneigh-
bors, i.e. networks that shares common attackers with another
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Fig. 14. Common attackers (within 10 minutes) vs Threshold on total number
of attacks

network, for one and five aggregated days, respectively. Fig.15
for instance, show that, for a single day, we can cluster
contributors in clusters of size 6 considering as neighbors
pairs of contributors that share at least 40 common source IPs
per day.

Fig. 15. Average number of neighbors vs Number of common attackers (1
day)

In Fig.17 and Fig.18 we analyzed the common attackers
between each contributing network and itsclosest neighbor,
i.e. the contributor with whom it shares the largest number
of common attackers. Most networks shares 20-60 common
attackers (single IPs); however, we also observe both extremes
cases: networks with less then 5 shared source IPs and
networks with thousands of shared attackers.

F. Correlation between attacks volume, duration and fan-out.

In these section we analyze the correlation between the
attack volume, duration, and fan-out of the attackers.

Fig.19 shows an interesting correlation between the fan out
of attackers and the duration of the attacks: IPs that attacks
one or few contributors tend to attack for a short time, while

Fig. 16. Average number of neighbors vs number of common attackers (5
aggregate days)

Fig. 17. CDF of common attackers with the closest neighbor (1day)

Fig. 18. CDF of common attackers with the closest neighbor (5aggregate
days)

IPs attacking several contributors tend in general to produce
attacks of longer duration.

A similar trend can be observed when correlating the
duration of the attack with its volume, Fig.20.

A less intuitive figure is the one relating the fan-out of
attackers with its volume. While intuitively one could expect
these two metric to be simply directly proportional to each
other, when analyzing the data we actually observe all kind of
different behaviors, Fig.21 and Fig.22
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Fig. 19. Fan-out vs duration (days)

Fig. 20. Volume vs duration (days)

Fig.21 vaguely suggest a linear trend between volume
and fan-out. However, a more careful inspection of the data
highlight that several different behaviors, Fig.22: for many
networks there seems to be a quadratic dependence of the
volume on the fan-out; but we also observe different kind
of extreme behavior: attackers with high volume focuses on
few, or one, contributors as well as attackers with low volume
but large fan out (low frequency attacks). It is possible that
separating these data, for instance according to the the type of
attack, will help us to see these different behaviors clustered
in few categories.

In conclusion, is it possible to spot attackers with large fan
out, large volume, and large duration. However, there are set
of attacker that have only two, or one, of thee properties.
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Fig. 21. Volume vs fan-out (log-log scale)

Fig. 22. Volume vs fan-out (lin-lin scale)


