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Abstract— Portable devices (such as personal digital assis-
tants and laptops with wireless connectivity) are becoming
ubiquitous. As their functionality and capabilities increase,
their energy consumption requirements also increase. Yet,
these devices have to operate on limited batteries. In order to
maximize the battery lifetime, it is necessary to optimize the use
of energy at various components of such a device. In this paper,
we consider a single portable device operating on a limited
battery that transmits information over an interference-limited
wireless channel. We seek to optimize the power consumption
on the communication radio in this device, by controlling both
the operation mode and the transmission power. We model
the general problem using dynamic programming, obtain
the optimal solutions for insightful special cases and explore
various design tradeoffs. Our work provides an analytical
framework for stochastic modeling and optimization of energy
spent for communications in battery-operated portable devices.

I. I NTRODUCTION

Recent advances in the design of portable devices com-
bined with advances in wireless access and network con-
vergence, have made portable - and in particular handheld-
devices extremely popular. Such devices conveniently pro-
vide many services including communication, computation,
personal information management, and Internet access. For
example, laptops equipped with Wi-Fi capability provide
today ubiquitous access to the Internet; traditional cell-
phones are enhanced with Internet-access and other services;
personal digital assistants (PDAs) combine various built-in
capabilities (including cellular, WiFi and VoIP, storage and
computation) and gain more and more momentum. We are
particularly interested in this last category, which has the
potential to become the dominant integrated solution in this
space.

Portable devices operate on a limited battery. Clearly,
it is desirable to maximize the battery lifetime for the
user’s convenience (e.g. to maximize the time to recharging).
However, limitations in the size and weight of portable (and
particularly of handheld) devices result in limitations in the
allowed battery size. Therefore, it is important to efficiently
use the battery reserves so as to achieve high-performance
operation and long battery lifetime. This optimization com-
plements improvements in the size-efficiency of batteries.

Power management and control can be applied on various
components and layers of a battery-constrained portable
device. In this paper, we focus on the efficient use of the
communication radio, and we control both (i) the transitions
between the various operation modes (e.g.on, sleep, off)
and (ii) the power used for transmission. In this first step,
our work develops the analytical framework for stochastic
modeling and optimization of energy efficient communica-
tion, taking into account both control aspects. We formulate
the general problem in a dynamic programming framework,
and explore various design tradeoffs through analysis of
insightful special cases. We hope that this approach will
be used by the research community to model additional
cases, explore the design tradeoffs, and develop and evaluate
practical heuristics.

The rest of the paper is structured as follows. In section
II we discuss related work in the area of energy-efficient
communications, and where our work lies in this problem
space. In section III, we introduce the general model for
a single node and discuss the various design tradeoffs. In
section IV, we discuss variations of the model to address
several operational issues and special case scenarios. In
sections V and VI, we present and analyze two insightful
special cases, which, apart from serving as a case study, also
sheds light to some fundamental tradeoffs of the general
problem. In particular, in section V, we study the case
where the node is always on and we control the transmission
power; we also optimally choose the initial power reserves.
In section VI, we control both the transmission power and
the operation mode of the radio. Section VII compares
the policies obtained for the two special cases and for
benchmark systems. Section VIII concludes the paper.

II. RELATED WORK

There has been a large body of work related to energy-
efficiency in various contexts, including system-level power
management, wireless ad-hoc and sensor networks.

System-leveldynamic power management (DPM)algo-
rithms, preserve energy by switching idle components to
lower power consumption states, e.g. see [1]; clearly there is
a tradeoff between energy savings and performance. In [2],



this problem has been studied as a stochastic optimization
problem; system resources are modeled by states, capturing
the power-performance tradeoff, and transitions between
states can be optimally managed by a policy manager. In the
past, timeout-based heuristics, [3], (originating from earlier
work on hard disks and interactive terminals) as well as
predictive techniques, [4], have also been extensively used.

On the other hand, in the context of wireless commu-
nications with interference-limited environments, there has
been an extensive amount of work ontransmission power
control (TPC); e.g. for an example of power control for
packet-based traffic see [5]. In that context, the purpose is
to optimally control the transmission power level to combat
interference, so as to use low power while still achieving a
desired quality-of-service level. In addition to saving energy,
TPC has additional benefits, such as increase in network
capacity (by keeping interference and thus stress to the
channel low) and decrease of exposure to electromagnetic
radiation.

Most past and ongoing work on energy-efficiency for
handheld and wireless 802.11 devices, focuses on the DPM
aspect, that is on when to switch the radio between various
operation modes; e.g. see [6], [7] for a protocols and systems
perspective and [8] for a stochastic optimization treatment
of the problem. On the contrary, little attention is given
on the transmission power aspect, as e.g. in [9], [10]. The
reason is that with the current transceivers, the energy spent
while in high consumption states (e.g.on) is significantly
higher than in the low consumption onesoff, sleep. This
is mainly due to the design of power amplifiers, whose
efficiency is non-linear with the transmission power: they are
efficient for high transmission power and inefficient for low
transmission power; a discussion in the context of 802.11
[11] can be found in [10]. However, as power control starts
getting implemented, e.g. in 802.11h [12], power amplifiers
are improving and becoming more efficient even in lower
power levels. For example, in [9], [10], TPC is used in
combination with PHY rate adaptation for 802.11a/h.

In this paper, we aim at minimizing the energy spent for
communication by the radio of a single battery-constrained
device; we seek to jointly control both the operation state
(which resembles DPM) and the transmission power (which
resembles TPC). The relative benefit from DPM vs. TPC
eventually depends on the scenario itself; e.g. as power am-
plifiers become more efficient DPM and TPC become com-
parable; for long range transmission (due to geographical
or military constraints) the transmission power dominates;
finally, TPC brings additional benefits other than battery,
such as the increase in network capacity.

Energy efficiency is also critical in the context of sensor
networks, for which resources are even more limited. A nice
survey on energy efficient techniques for sensor networks
is given in [13]. The characteristics of radios for sensor
networks differ from traditional radios (e.g. in thatTx power
is comparable toRx, Idlepower). Because the dominant part
of power is spent for keeping the radio on, the widely used
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Fig. 1. A single portable device with battery reservesπ andb packets in
the buffer. The wireless channel has interferencei. The radio has control
over (i) its operation mode (ON, SLEEP, etc) and over (ii) the transmission
powerp that is used to transmit a packet.

technique for saving energy, is again to turn off the radio
during idle periods.

Finally, another body of work in wireless ad-hoc and
sensor networks, takes a network-centric point of view and
tries to maximize the lifetime not only of individual nodes
but also of the network as a whole. Issues include how
to establish topology, how to route traffic under stringent
energy constraints, and how to manage the operational
state transitions while maintaining undisturbed operation.
Representative examples of work in this area, include - but
are not limited to - [14], [15], [16], [17]. In [18], closed-
loop control concepts were used for power management of
networks-on-chips.

Methodologically, our work resembles more the stochastic
modeling and optimization approaches, e.g. [2], [8]. How-
ever, we control both the radio state (DPM) and the trans-
mission power (TPC); in the following sections, we explore
how the optimal control depends on the relative values of
operating power (inon, sleepstates) vs. transmission power.

III. GENERAL MODEL AND PROBLEM
FORMULATION

In this section we introduce the basic model, reflecting
our problem formulation and capturing the performance
tradeoffs and control issues. We embed the problem within
a Markov decision process framework and use dynamic
programming to compute the optimal control [19].

A. System Description

We consider the single portable device shown in Fig.
1. The device has a radio which can be in one of two
modes: either ON or SLEEP. (This can be extended to a
larger number of states, at the cost of additional computation
complexity, as discussed later. Without loss of generality, let
us consider two states for the moment). The device also has a
battery with energy reservesπ, and a buffer withb packets
containing data that the user has accumulated and wants
to transmit over the wireless channel (e.g. to send emails
or any other data transfer). The radio can transmit packets
only when it is ON. The wireless channel has interference
i, which affects the probability of successful packet trans-
missions. The device wants to transmit all packets across
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the wireless channel using the minimum amount of battery
energy. This can be achieved by appropriately controlling
the operating mode of the radio and its transmission power
p. Time is slotted and indexed byt = 0, 1, 2, 3, ....

Using transmission powerp, a packet is successfully
transmitted with probabilitys(p, i) that depends on the inter-
ferencei (or quality of the channel). Clearly, an unsuccessful
transmission wastes battery energy. The interferencei in the
channel fluctuates according to a time-homogeneous Markov
chain, taking values in the finite setI of all attainable
interference states. It switches with probabilityqij from
statei ∈ I in a time slot to statej ∈ I in the next time
slot. Furthermore, it is assumed that the interference is not
responsive to transmitter actions.

Initially the device has batteryπ0 and b0 packets. We
assume that the packets are already collected and stored
in the buffer, and the node wants to transmit them over
the wireless channel, e.g. to its neighbors or to the base
station. In general, the user of the device may continuously
produce new data packets that arrive to its buffer. The user
activity, which can be thought as arrival process to the buffer,
follows its own duty-cycle, which might also be subject to
another optimization. For the moment, we focus on how to
manage the radio in order to transmit a certain amount of
already stored packets, while spending the minimum amount
of energy. Later on, we can modify our model to include a
live source or continuous activity.

The dilemma faced by the radio is the following. On one
hand it wants to transmit the packets as soon as possible; in
order to do so though, it has to be ON, spending operating
power Pon, and a certain transmission power (p). On the
other hand, it wants to avoid spending any power in order
to preserve its limited battery. Clearly, there is a tradeoff
between these two conflicting goals. We seek the optimal
power management to jointly optimize these goals.

B. Discussion of Costs

There are several pressures to be considered and captured
into performance/operational costs.

Packet Delivery and Costs.We assume thatb0 packets,
containing information produced by the user and initially
stored in the buffer. In order to model our intention to trans-
mit these data on time, we introduce the following costs.
The backlog costB(b), incurred at each time slot, models
the urgency to deliver the packets as soon as possible. In
addition, if the system terminates (because it runs out of
battery) without delivering all data, we introduce a terminal
cost (bx) associated with the number of remaining packets.

Power Control and Costs.In order for the device to
transmit the packets, it needs to spend energy from its
battery reserves, which initially isπ0. The following power1

costs are associated with the operation of the device:

1Throughout the text, we will sometimes use the terms “power” and
“energy” interchangeably, considering a unit time of1.

• Power Spent on Operation Modes.The radio spends
operating powerPon andPsleep, for every time slot in
mode ON and SLEEP respectively. In general,Pon is
the dominant part, whilePsleep ' 0 is negligible; e.g.
the ratioPon:Psleep depends on the specific device and
radio (typically in the order of 10:1 in 802.11 radios).
Additional operational modes of interest can easily be
incorporated in this model by increasing the state space.
For example, 802.11b radios have theawake, sleep, off
modes and theawakestate can further be divided into
transmit, receive(which is in general non negligible)
and idle. For simplicity, in this paper, we refer only
to on and sleep modes. Methodologically, the same
analysis can be applied to any number of states, at the
additional cost of increased computational complexity.

• Power Spent on Transitions between Modes.In general,
switching between modes requires to spend transmis-
sion power. Typically, more power is required to wake-
up the node.2

• Transmission Power.The radio can use transmis-
sion (Tx) power p from a bounded range ofp =
0, 1, 2, ...Pmax ≤ π − Pon. The specific values depend
on the standard, e.g. see [12] for the possible power
levels in 802.11h.

• Stress Induced to the Channel.Transmission powerp
when the interference isi, introduces a costΨ(p, i)
paid in that slot. This cost may reflect the interference
stress that the transmission under consideration induces
on the channel, e.g., interfering with ‘background’
transmissions from other transmitters that use the same
channel. The latter may in turn stress the original
‘foreground’ transmitter in response to its power in-
creases, thus generating more interference on it. This
entanglement effect is implicitly captured in the cost
Ψ(p, i). The costΨ(p, i) should be increasing in both
p and i, consistently with the intuition that the more
congested the channel is, the more power should be
spent to capture it and support the required success
probability. The stress that transmitting power induces
to the channel may be critical in densely populated
wireless networks with a large number of transmit-
ters. Recent work characterized the capacity of such
interference - limited wireless ad-hoc networks [20].
A final consideration is how Power Control interacts
with Multiple Access protocols such as CSMA/CA;
this problem is important, but outside the scope of this
paper.

• Cost of Unused Battery.All the above-mentioned power
requirements drain the battery reservesπ0. We would
like to transmit the packets, using the minimum re-

2We further assume that transitions happen with negligible transition
delay. This is the case when the transition time is shorter than the duration
of the time slot. One could also model a transition delay that lasts for
several time slots, by maintaining additional the state to keeping track in
a time window, from the time a transition is requested until the transition
takes place. We omit it here for simplicity.
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quired battery. If initially we “payed” for batteryπ0, but
in practice we sent all packets using onlyπ < π0, then
we associate a terminal costπy with the unused battery,
to express our intention to make an initial investment
π0 that is just sufficient for the job, no more no less.
This investment can be thought in terms of money,
engineering effort to manufacture a battery larger than
needed (given size and form constraints and desirable
lifetime for the user’s convenience), or engineering
effort to scavenge energy from the environment. The
more general question ishow much energy we need
per packet,limb0→∞ π0/b0?

Depending on the relative values ofp and Pon, most of
the energy savings can come from DPM or TPC; clearly the
larger Pon : p the more the benefit from DPM. However,
even whenp << Pon (as for example in the motes used in
sensor networks), the stressΨ(p, i) induced to the channel
may be comparable toPon. Furthermore, transmission power
control is implicitly entangled with DPM control because
it affects how long we keep the radio ON and pay the
Pon operating cost. Our framework enables us to explore
tradeoffs likePon vs. p.

C. System State and Optimal Control

The objective is to transfer all packets stored in the buffer,
minimizing the overall cost. The system state to be tracked
in each time slot is:

(b, π, i,mode)

that is, the current numberb of packets left in the transmitter
buffer, the remaining batteryπ, the current interference state
i in the channel and themode of the radio (ON or SLEEP)
in the previous time slot. The controls applied, or decisions
made, in each time slot, are(m, p), where:
• m is the mode of the system in the current time slot:

m ∈ {ON, SLEEP}.
• p is the transmission power, and can be chosen from

a bounded range[0, Pmax], provided that the current
mode is ON and there is enough battery left (p ≤ π −
Pon).

System Evolution.The device initially starts withb0

packets in the buffer. In every time slot, the optimal control
chooses the mode in the current time slotm and the
transmission powerp. The evolution of the system ends
when either all packets are transmitted (b = 0), or the battery
is emptied (π = 0). Given this formulation, the system
simply becomes a controlled Markov chain. Hence, we can
develop a Dynamic Programming (DP) recursion to compute
the optimal control [19].

Let J(b, π, i, mode) be the cost-to-go, that is the min-
imum cost incurred from now on until termination, given
that the optimal control(m, p) is used and the current state
is (b, π, i, mode). The quantityJ(b, π, i, mode) satisfies the
following functional recursive equations, (1) and (2), for
b ∈ {0, 1, , ..., b0},π, i ∈ I, mode ∈ {on, sleep}.

J(b, π, i, sleep) = min
m
{B(b) +

1m=sleep

∑

j∈I

qijJ(b, π, j, sleep)+

1m=on[Psleep→on +
∑

j∈I

qijJ(b, π − Psleep→on, j, on)]}

(1)

Eq. 1 describes the evolution, given that we are in SLEEP
mode. In the current time slot, we are paying the backlog
cost. If we decide to stay in SLEEP mode,3 the only state
change is that interference goes fromi to j. Alternatively, we
may decide to switch back ON, paying transition (waking
up) cost Psleep→on in the current time slot and future
expected cost

∑
j∈I qijJ(b, π − Psleep→on, j, on)).

J(b, π, i, on) = min
m, p

{B(b)

+1m=sleep{Pon→sleep +
∑

j∈I

qijJ(b, π − Pon, j, sleep)}

+1m=on{Pon + p + Ψ(p, i)

+s(p, i)
∑

j∈I

qijJ(b− 1, π − p− Pon, j, on)

+[1− s(p, i)]
∑

j∈I

qijJ(b, π − p− Pon, j, on)}}

(2)

Eq. 2 corresponds to the case that we are in the ON mode.
Backlog costB(b) is payed at the current time slot. Addi-
tional cost will be payed, depending on the decision to stay
ON or switch to SLEEP. The optimal control will choose
the transition that minimizes the total expected (current and
future) cost.

The 2nd line of Eq. 2 corresponds to the case that we
decide to switch from ON to SLEEP. In the current time
slot, we pay backlog and operating cost. The future expected
cost depends on the channel transitions (fromi to j) and
on the cost-to-go in the SLEEP state, given in Eq. 1:∑

j∈I qijJ(b, π − Pon, j, sleep).
The3rd and4th lines of Eq.2 correspond to the case that

we decide to stay ON. Then the optimal cost-to-go cost,
exercising optimal control, is comprised of the cost payed
at the current slot (backlog costB(b) and power costPon +
p+Ψ(p, i)) and two more terms depending on the outcome
of the current transmission.J(b − 1, π − p − Pon, j, on)
corresponds to the case that the transmission is successful;
the number of packets is reduced by one and the battery
is reduced by the operating costPon and the transmission
costp. J(b, π− p−Pon, j, on) corresponds to the case that
the transmission is unsuccessful, thus the buffer level stays
the same, although we spent the same amount of battery
p + Pon, as before.

3Notation: the indicator function1m=on takes the value1 if m = on
and0 otherwise. Similarly,1m=sleep = 1 if m = sleep and0 otherwise.
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Terminal Costs.The recursion terminates either when we
run out of battery (π = 0) or when we transmit all packets
(b = 0). The terminal costs depend on the remaining packets
and battery respectively:

J(b, 0, i,mode) = bx (3)

J(0, π, i, mode) = πy (4)

The parametersx, y capture how much we value the impor-
tance of un-transmitted packets and excessive battery units.
In the numerical analysis we usex = y = 1, but our model
can accommodate anyx, y.

Computing the Optimal Control.Solving the Dynamic
Programming recursion equations results in the optimal
controls for (m, p∗) for all states(b, π, i,mode). The DP
terminates when the buffer emptiesb = 0 or the battery
empties π = 0. Any policy that does not terminate in
finite time will incur an infinite (backlog) cost. However,
being ON and using anyp, we can either empty the buffer
with positive probability or finish our battery in finite time.
Therefore, there exists a stationary optimal control solution,
obtainable by value iteration. [19].

Choice of Initial Battery.Having found the optimal con-
trol for various values of the initial batteryπ0, we can take
an additional step and optimize the choice of initial battery
required, to minimize the total cost. This is an important
decision that determines the design and engineering of
the battery to be put in the device: it should be large
for sufficiently long operation and should also conform to
practical size/form/cost constraints. To express this goal in
the context of the DP formulation, we want to chooseπ∗0
s.t.:

min
π0

∑

j∈I

qijJ(b, π0, i,mode) (5)

IV. ADDITIONAL OPERATIONAL
CONSIDERATIONS

In this section, we discuss how the general formulation
and methodology can be appropriately adjusted to address
various operational scenarios. First, we present two special
cases of the general model; then, we mention two possible
extensions.

A. Negligible Wake-up Cost

In some operational scenarios, the power cost for transi-
tions between operating modes may be negligible compared
to the other costs, i.e.Pon→sleep ' Psleep→on ' 0. In these
cases, the general model can be significantly simplified.
When the radio decides not to transmit (p = 0), it can
also switch to SLEEP, in order to avoid spending operating
powerPon. Therefore we can eliminate the radiomode (ON
or SLEEP) from the system state, and the controlm from
the control variables.p = 0 now automatically means that
the radio is also inmode = SLEEP . This was not the
case in the general model, where the radio could decide to

stay ON without transmitting (p = 0), in order to avoid the
transition costPtr.

The state of the system then becomes simply(b, π, i)
and the only control is the transmission powerp. p = 0
automatically means that the radio is in SLEEP mode: there
is no operating cost (Pon1p=0 = 0) and there is no stress
on the channel (Ψ(p = 0, i) should be forced by definition
to be0). The recursive equations then become simpler:

J(b, π, i) = min
p=0,1,...,π−Pon

{B(b) + Pon1{p>0} + p

+Ψ(p, i) + s(p, i)
∑

j∈I

qijJ(b− 1, π − p− Pon1{p>0}, j)

+[1− s(p, i)]
∑

j∈I

qijJ(b, π − p− Pon1{p>0}, j)}

(6)

for b ∈ {0, 1, 2, ..., b0}, π ∈ {0, 1, 2, 3, ..., π0}, i ∈ I.

B. Device Always Powered-On

Another special case is when the device stays ON, i.e.
we disable the SLEEP mode. This scenario may arise when
devices are power-on always or for a long period of interest.
Even more interestingly, it is also relevant when the device
has a longer duty cycle, consisting of ON and OFF periods,
but we focus and optimize specifically the ON part of the
duty cycle. In this case, the recursive equations get further
simplified:

J(b, π, i) = min
p=0,1,...,π−Pon

{B(b) + [Pon + p + Ψ(p, i)]

+s(p, i)
∑

j∈I

qijJ(b− 1, π − p− Pon, j)

+[1− s(p, i)]
∑

j∈I

qijJ(b, π − p− Pon, j)}

(7)

C. Packet Arrivals

So far, we consider that a certain amount of packets is
already stored in the buffer and need to be transmitted.
However, data may continuously arrive at the node, caused
by continuous activity of the user, e.g. a VoIP call. This
scenario can be easily included in the DP formulation by
incorporating a live source(s) generating packets that arrive
to the buffer. This will add a second source of uncertainty
to the system, in addition to the interference.

D. Controlling Multiple Components of a Device

A portable/handheld device consists of several compo-
nents, including the processor, the memory and the wireless
radio (which has been our focus so far). Power-management
of the device as a whole is also possible in the DP
framework: it should consider all components, their power
consumption characteristics and the interactions between
them. A power analysis of the specific device of interest
is important in order to understand how power is allocated
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to the various components and where there is room for
optimization. E.g., 802.11 radios have very different power
consumption characteristics than the motes used in sensor
networks.

E. Network-Wide Power Management

Network of nodes.A natural next step, after the power
management for a single node, is the maximization of the
lifetime of an ad-hoc network consisting of multiple such
nodes. Much effort has already been put to this direction
from a system and protocol perspective in the context of ad-
hoc and sensor networks [15], [16], [17]. As an extension of
the current work, we plan to address the question of maxi-
mizing the lifetime of a battery-operated network, within the
dynamic programming framework. Interesting issues include
(i) studying battery savings in conjunction with topology and
routing and (ii) designing practical distributed heuristics that
approximate the global optimum. This class of problems
bears similarities with recent work on networks-on-chips
[18].

Responsive interference.A different aspect that arises
when we consider many nodes is that of responsive vs.
markovian interference. So far, we have modeled the chan-
nel as a Markov chain. This modeling assumption was a
methodological step that allowed us to abstract and summa-
rize the interference caused by a large number of radios into
a single “background” interference. In practice, this Markov
chain will have a large number of states (corresponding e.g.
to nodes starting and finishing transmissions) or the channel
may not even be Markovian (if many nodes implement
power control). As for the first concern, our approach is
clearly able to address any markovian channel, even with a
large number of states, at the cost of higher computational
complexity. As for the second concern, preliminary simu-
lations in a responsive interference environment provide a
sanity check.

V. SPECIAL CASE I: SENSOR ALWAYS ON,
CONTROL TRANSMISSION POWER

Problem Setup.We now consider a special case, which
is interesting in itself and also allows us to highlight
fundamental tradeoffs of the general problem. In particular,
and in order to highlight the relation betweenπ0 and b0,
we consider the following problem setup. First, we omit
the backlog costB(b). Second, we ignore the interference
i and capture the channel behavior using a probability of
successs(p) which is an increasing, convex function ofp,
e.g.s(p) = p/(p + i). (In a sense, the interferencei is still
captured as a parameter ins(p).) Third, we are always ON,
payingPon in every time slot, and we are never idle (p > 0).

The problem now is as follows. We want to sendb0

packets over a channel with success probabilitys(p).
1) How much batteryπ∗0 do we need? What is the relation

betweenπ0 andb0? Is it linear? How does is it affected
by the channel behaviors(p)?
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Fig. 2. Four examples of the system evolution(b, π). Starting at(b0, π0)
(top-right side of the graph) and using some power at every time slot, we
gradually empty the battery and/or the buffer (moving towards the bottom-
left side of the graph). We terminate either when we empty the buffer
(b = 0) or when we run out of battery (p = 0).

2) What is the optimal transmission policyp∗ ? How
does it depend on the remaining batteryπ, the current
backlogb and the operational costPon/p?

The DP formulation is now simply:

J(b, π) = min
p=1,...,π−Pon

{W (p + Pon) +

s(p)J(b− 1, π − p− Pon) + [1− s(p)]J(b, π − p− Pon)}
(8)

J(0, π) = Wπ, J(b, 0) = b (9)

J(b) = min
π0

J(b, π0) (10)

The weightW in front of the power-related costs indicates
how much we value power vs. packet delivery and it strongly
affects the optimal policy.

Intuition. The example illustrated in Fig. 2 gives some
intuition. Let’s say we want to sendb0 = 50 packets.
Assume the optimal power policy is to use1 unit for
transmission every time and ignorePon. If the channel were
perfects = 1, we would need exactly one unit of power per
packet:π0 = b0. In Fig. 2, the system would evolve from
(b0 = 50, π0 = 50), across the straight dotted line toward
(0,0), transmitting all packets and wasting no battery.

If s < 1 when using1 unit power to transmit, some
packets are lost and additional power is needed to retransmit
them: π0 > b0. E.g. for a Bernoulli channel w.p.s < 1,
we need on averageπ0 = b0/s ≥ b0 units of power. For
example, in Fig. 2, the top thin lines show the sample paths
exercising optimal control starting at(b0 = 50, π0 = 50)
and assumings(p = 1) = 0.1; the system always terminates
on the y-axis(b > 0, π = 0) , even if we give a lot of
importance (largeW ) to power. However, if we starting at
higher initial power(b0 = 50, π0 = 100), we are able to
terminate at the y- or at the x-axis, by appropriately tuning
W .

For a general success probabilitys(p), the optimal choice
of initial batteryπ∗0 depends on the shape ofs(p). The DP
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Fig. 3. Optimal initial batteryπ∗0 increases with the number of packets to
be transmittedb0, depending on the weight W. (Keepingi, and thuss(p),
the same.)

recursive equations compute the optimal control(π∗0 , p∗).
After choosing the rightπ∗0 , we let the system evolve from
(b0, π

∗
0) until it hits b = 0 or π = 0, using the optimal

control p∗. Depending on how much we value packets vs.
power (captured by our choice of weightW ), we can affect
the optimal policyp∗ and make the system “hit” one of
the two axes. Ideally, we would like to hit point (0,0),
which means that we used just enough power to transmit
the packets.

Structural Properties of the Optimal Policy.We now nu-
merically compute the optimal policy(π∗0 , p∗) and comment
on its observed structural properties. The power unit in all
figures is the step in Tx powerp = 1, 2, ...Pmax (i.e. we
normalize w.r.t.pmin

.= 1)
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is required.

Fig. 3 confirms the intuition that more initial power
π∗0 is needed to send more packetsb0; the slope depends
on the weightW , the relative importance of battery vs.
remaining packets in the buffer. Furthermore,π∗0 depends
on the volatility of the channel, as shown in Fig. 4: asi
increases,s(p) becomes more volatile and we need larger
π0 to accommodate the channel fluctuations even for the
sameb0 andW .
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Fig. 5. Optimal initial batteryπ∗0 , depending on the weight W (relative
importance of power vs. remaining packets).

Fig. 5 shows in more detail the effect of the weightW .
The larger the weight on power, the more conservative the
optimal transmission policyp∗ , the less initialπ0 we need;
this is captured by the linear decreasing part in Fig. 5. At
the extreme, where we choose W such thatW (p + Pon) ≥
s(p), ∀p, we indicate that we value power spent in one time
slot more than the delivery of one packets(p). In that case
it doesn’t even worth it to try to send anything, which is
captured, in Fig. 5, by the threshold effect and the sharp
decrease down toπ0 = 0.

In summary, regarding the optimal initial batteryπ∗0 :

• π∗0 ↑ asb0 ↑
• π∗0 ↑ as i ↑
• π∗0 ↓ asW ↑. π∗0 = 0 if W (p + Pon) > s(p) ∀p
Let us now discuss the properties of the optimal transmis-

sion policyp∗. Fig. 6 showsp∗ as a function of the remain-
ing batteryπ, for one packet (b = 1) and for various values
of Pon. In transmitting one packet we face the following
dilemma. On one hand, we can use low Tx powerpl, thus
have low prob. of successs(pl), and spend several (sayk)
slots andk(pl +Pon) units of power before we succeed. On
the other hand, we can spend a largeph and get the packet
through with high prob. in one slot, payingph + Pon. If
Pon is small, then we can afford paying it multiple times.
As Pon ↑ (moving from the top to the bottom plots of Fig.6),
we cannot afford payingPon multiple times and we become
more aggressive: we use high Tx power in order to finish
as soon as possible. The chosen number of time slotsk
is constrained by whether there is enough battery for all
k of them. This explains the triangular shape along theπ-
axis: as more power is available, there are more transmission
opportunities which allow us to decreasep∗ and spread it
over more slots. The sharp decreases in Fig.6, happens when
π ↑ so that we get one more opportunity to transmit (say
from k to k + 1 times); thus the periodic triangular shape.
When more battery is available, we have ample transmission
opportunities to transmit and we become less stressed: the
triangular shape is repeated, but the fluctuations have lower
peaks, as we move to right of theπ-axis.
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Fig. 7. Effect of batteryπ on the optimal policyp∗. Optimal transmission
powerp∗ for transmittingb packets, as a function of battery reservesπ.

The exact same tradeoff also explains the triangular shape
in Fig.7. As more batteryπ is available, the choice ofp∗,
(and thuss(p) and eventually number of slots) is less critical.
Thus the triangular shape is more pronounced at the left side,
where we run short of battery. In the bottom plot of Fig.7, we
show the case for multiple packets: the oscillations are less
pronounced and they have smaller period. This is because,
we cannot be aggressive for the first packets as we have to
save some battery for later packets as well. The fluctuations
again disappear as we move to the right (large amount of
battery).

Understanding the structural properties of the optimal pol-
icy is important in order to design practical heuristics. Pre-
liminary results have shown that heuristics mimicking these
structural properties, achieve near-optimal performance at
lower implementation complexity.

VI. SPECIAL CASE II: CONTROLLING BOTH
TRANSMISSION POWER AND SLEEP MODE

We now extend the previous section by controlling not
only the transmission power but also the operation mode
of the radio. For example, this might be useful when the
channel interference is high; in order to avoid spending a
large amount of operating power, the radio may choose to

go into SLEEP mode. While waiting for the interference to
decrease, the radio incurs a backlog cost due to the packets
remaining in the buffer; this pressure will eventually force
the radio to transmit. The tradeoff is now between power
savings and backlog cost.

In order to better highlight this core tradeoff, we make
the following choices within the general model of section
III. First, we consider the i.i.d. case for the channel model:
a low interference state (il) w.p. pl, and a high interference
(ih) state w.p.ph. The probability of successful transmission
remainss(p, i) = p/(p + i). For the numerical examples in
this section, we usepl = ph = 1/2, unless stated otherwise.
The state now includes the backlogb, the batteryπ, and
the interference leveli. We now include in our control the
option of p = 0 (SLEEP mode), during which no operating
cost (Pon) is incurred. For a fair comparison with section V,
we model the power and backlog costs similarly. As in the
previous section, the weightW in front of the power-related
costs indicates how much we value power vs. packet delivery
and it strongly affects the optimal policy. The recursive
equations become as follows (notice the dependence on the
time slotn):

Jn(b, π, i) = min
p=0,...,π−Pon

{W (p + Pon1p>0)

+s(p, i)
∑

level=l,h

plevelJn+1(b− 1, π − p− Pon1p>0, ilevel)

+[1− s(p)]
∑

level=l,h

plevelJn+1(b, π − p− Pon1p>0, ilevel)}

(11)

JN (0, π, i) = Wπ, JN (b, 0, i) = b (12)

J(b) = min
π0

J(b, π0) (13)

Fig. 8 shows the effect ofPon onp∗ to transmit one packet
with 17 time slots left before termination. We observe that
when the channel interference is high, the optimal policy
chooses to not transmit and enters in SLEEP mode. When
the channel interference is low, the shape of the optimal
policy shows similar dependencies onPon as in Fig. 6.
WhenPon is low, we can afford to transmit frequently and
transmit at lower power. Conversely, whenPon is high, we
prefer to transmit at high power only a few times. Unlike
the previous section, when the channel is good, transmission
power increases with the battery reserves. This is due to
the dependence on time in the DP formulation; the radio
spends more power to ensure successful transmission and
avoid backlog costs.

This backlog pressure is better exemplified in Fig. 9. With
termination in 2 time slots, we must aggressively transmit
to avoid the cost of unsent packets. Unlike Fig.8, the radio
transmits even when interference is high.

These trends are also apparent in Fig. 10. Again, the
dependence on time in the DP formulation affects the
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Fig. 8. Effect ofPon. Optimal transmission powerp∗ as a function of
the battery reservesπ andPon within 17 time slots.
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Fig. 9. Effect ofPon. Optimal transmission powerp∗ as a function of
the battery reservesπ andPon with 2 time slots.

optimal policy. When there is only 1 packet to transmit, the
radio aggressively transmits even when interference is high.
When there are 3 packets to transmit, the radio becomes even
more aggressive, because there are only 2 time slots left for
transmitting all 3 packets. When there are many time slots,
the optimal policy is more relaxed: it avoids transmitting
when the channel is bad, even with a large number of packets
in the buffer.

Fig. 11 shows the effect of the channel state probabilities,
pl and ph. When the probability of the state with low
interference is high (e.g.pl = .75), the radio can use a
conservative transmission policy. When this probability is
lower (e.g.pl = .25), the radio must be more aggressive
and take advantage of the low interference state to ensure
successful packet transmission before re-entering the more
common high interference state. Fig. 11 shows these effects
at two times slots before termination. When there are more
time slots to go, the same observations hold, but the backlog
pressure is lower; therefore, the radio can afford to enter in
SLEEP mode when the channel is bad.

VII. C OMPARISON OF TRANSMISSION POLICIES

In this section, we compare the two optimal transmission
policies from sections V and VI, with each other as well as
with two benchmarks policies (constant power and constant
signal-to-interference ratio). More specifically, the policies
under comparison are the following:

1) The optimal policy of section V. This policy is un-
aware of the channel interference level and is only
aware of the average interference.
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Fig. 10. Effect of battery.Optimal transmission powerp∗ as a function
of battery reserves, for transmittingb packets within 2 time slots.
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2) The optimal policy of section VI. This is a channel
aware policy: we assume that the radio can probe the
channel and has knowledge of the interference level.

3) The commonly used ”constant power” benchmark.
It is channel unaware and uses the same power to
transmit each packet, sop∗ = π/b.

4) Another commonly used benchmark is the policy
that achieves constant signal-to-interference ratio (or
constant SIR). Because the constant SIR benchmark
is channel aware, in order to make a fair comparison,
we consider a constant power benchmark that uses
power equal to the average transmission power used
by constant SIR.

We performed numerical simulations with the following
setup. The channel was assumed i.i.d. withpl = ph = 1/2.
The initial buffer level wasb = 10. We varied the initial
battery reserve,π, and measured the average number of
successful packet transmissions achieved by each policy. For
the same initial battery reserve, the larger the number of
successful transmitted packets, the better the performance
of the policy. Fig. 12 and Fig. 13 show the results of this
comparison for two sets of interference levels.

In Fig. 12, ih/il = 50. The channel unaware policy
outperforms the constant power benchmark: it successfully
transmitting over twice the number of packets. Also, our
channel aware policy successfully transmits twice as many
packets as the constant SIR policy. The channel unaware
policy barely outperforms the SIR benchmark, because the
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Fig. 13. Comparison of different transmission policies.Beginning with 25
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as a function of the total energy used.il = 10 and ih = 50.

latter has the advantage of using information about the
channel interference.

In Fig. 12, ih/il = 5, i.e. the difference between the
high and low interference levels is smaller. Because the
interference levels are similar, the benefit from knowing
the accurate interference level, as opposed to the average
interference level is less valuable. Therefore, the benefit
from using channel aware, instead of channel unaware,
policies is smaller. Still, the channel aware policies outper-
form the channel unaware policies. We can also see that
the transmission policies we have presented in this paper
continue to outperform the two benchmark policies.

VIII. CONCLUSION

In this paper, we studied power management at the radio
of a battery-operated portable device, so as to transmit a
certain amount of information while preserving the battery.
We also showed how to optimally choose the initial battery
given the various design costs. The main contribution of
the paper is the formulation of this class of problems
in the dynamic programming framework. Furthermore, we
considered both aspects of (i) dynamic power management
and (ii) transmission power control, and we explored the
relative energy savings from these two, for a range of
conditions (captured byp : Pon). As an illustration of our
approach, we analyzed two insightful special cases, that
allowed us to highlight fundamental tradeoffs and charac-
teristics of the optimal policy. We are currently working

on more extensive simulations and heuristics design. We
hope that this approach will be useful for characterizing the
performance limits of battery-constrained portable devices
and for designing and evaluating practical heuristics.
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