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Abstract
Monitoring and diagnosis of network conditions is a central problem in networking. As

such, it has received a lot of attention in the Internet community in general and in the
context of overlay networks in particular. Independently, recent advances in network coding
have shown that it is possible to increase network capacity and better share the available
resources by allowing intermediate nodes to perform processing operations, in addition to
just forwarding packets. In this work, we propose the use of network coding techniques
to improve several aspects of network monitoring in overlay networks. As a specific ap-
plication, we use our approach for the well-known problem of network tomography, and
in particular for inferring link loss rates from end-to-end measurements. We demonstrate
that our approach can decrease the bandwidth used by probes, improve the accuracy of
estimation, and decrease the complexity of selecting paths or trees to send probes.

1 Introduction

Distributed Internet applications often use overlay networks, that enable them to detect and
recover from failures or degraded performance of the underlying Internet infrastructure. To
achieve this high-level goal, it is necessary for the nodes in the overlay to monitor Internet
paths, assess and predict their behavior, and eventually make efficient use of them. Clearly,
accurate monitoring at minimum overhead and complexity is of crucial importance for the
operation of all networks, and particularly for overlay networks [1].

In the past decade, several approaches have been proposed for inferring network charac-
teristics of interest (such as topology, packet loss rate, delay, and failures) using end-to-end
measurements [2, 3, 4]; this class of problems is commonly referred to as network tomography.
Active measurement techniques have been proposed that send sequences of probe packets from
a set of sources to a set of receivers, and infer link-level metrics of interest from the received
packets. Some techniques send probes over unicast paths [5] while others use multicast trees
[2, 3]; to cover the entire network, a mesh of paths and/or trees is needed. The bandwidth
efficiency of these methods can be measured by the number of probe packets needed to esti-
mate the metric of interest within a desired accuracy. It depends both on (i) the choice of
paths/trees over which sequences of probes are sent and on (ii) the number of probes in each
sequence. Clearly, there is a tradeoff between bandwidth efficiency and estimation accuracy; it
is desirable to improve both as well as to keep computational complexity low.

In this work, we propose the use of network coding techniques [6, 7] to improve several
aspects of network monitoring. The basic idea of network coding is to allow intermediate nodes
to process the incoming packets before forwarding them. The set of operations that intermediate
nodes perform are referred to as a network code; typically, linear codes are used [7]. The idea of
network coding (albeit difficult to apply to today’s Internet routers) can be gracefully applied
to overlay networks, where the network designer has control over the intermediate nodes in the
overlay; furthermore, we envision the use of network coding only for special probe packets and
not for forwarding regular traffic.



Allowing nodes in an overlay network to perform network coding can improve all aspects of
network tomography, namely bandwidth usage, estimation accuracy, and complexity in choosing
which paths to monitor. More specifically, the use of network coding allows to (i) eliminate the
overlap between paths and/or trees needed to cover the entire network (ii) use less probes per
sequence to achieve a certain accuracy, by intelligently using not only the number, but also the
content of received probes and (iii) reduce the complexity of choosing which paths to monitor.
In general, we believe that the idea of combining network coding with network tomography
techniques is very promising. As a concrete example, we show how to use simple linear coding
to improve the inference of link-level loss rate from end-to-end measurements.

The structure of the paper is as follows. Section 2 summarizes related work in monitoring
and network coding. Section 3 discusses a motivating example, which demonstrates the key
points of our approach. Section 4 discusses more formally the application of network coding to
network tomography. Section 5 presents simulation results and section 6 concludes the paper.

2 Related Work

Within the broad area of network monitoring, we are interested in network tomography for
overlay monitoring, i.e., in using active (unicast or multicast) probes between overlay nodes to
infer characteristics of the Internet paths between them. There has been a significant amount
of work in this area. Our novel contribution is the application of ideas from network coding.

In the context of resilient overlay networks (RON) proposed in [1], O(n2) paths are moni-
tored, where n is the number of end-hosts. The authors in [5] chose a basis of k << n2 paths to
measure and compute the properties of all n2 paths. Different studies have measured a variety
of characteristics, including loss metrics [2, 3], delay-metrics, or generic distance metrics [8, 9];
in this paper, we are interested in inferring packet loss rates.

The problem of inferring the link loss rates from end-to-end measurements is typically under-
constrained. Network tomography [2, 3] originally used multicast probes to exploit correlation
on shared parts of the path. Later on, techniques were developed to use unicast probes instead.
Good estimators have been developed to infer link loss rates from the multicast probes observed
at the receivers. The trees over which multicast probes are sent are either considered given, or
are selected by solving a covering problem [10], which is NP–hard. [4] developed a technique
for jointly estimating the topology and the link characteristics. In contrast, one of the results
of this paper is that using network coding makes the selection of probe routes an LP problem.

The area of network coding emerged in 2000 [6, 7], and since then it has attracted a lot of
interest [11] due to its potential for contributions to the theory and practice of networks. The
core idea in network coding is to allow intermediate nodes to combine packets before forwarding
them. In particular, it is well known that maximizing the throughput when multicasting (a
problem known as packing Steiner trees) is NP-hard. In [12], it was shown that by combining
independent network/information flows at intermediate nodes, the throughput can be maxi-
mized using polynomial-time algorithms. We use this idea to choose routes (over which we
send probe packets) that cover the network we want to monitor; the solution can now be found
in polynomial time, which is an improvement over [10]. The difference from [12] is that instead
of maximizing throughput, we are interested in minimizing the cost of sending probes.

In practice, multicast is not widely supported and unicast probes are used instead. In
order to emulate multicast behavior and exploit correlation, ideas such as back-to-back packets
have been proposed. Unfortunately, ensuring that two packets will stay back-to-back until
their destination is impractical, as it requires perfect synchronization, knowledge of delays in
every network element and no cross-traffic. Network coding offers an alternative solution: two
incoming packets are forced to share fate downstream, not by keeping them back-to-back but
by combining them into a single packet, using network coding at the junction node.

Although network coding cannot, and should not, be widely applied to Internet routers, it
could naturally be used in overlay networks where nodes have enhanced functionality; this has
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Figure 1: Main example. A and B are sources, E and F are receivers, C adds (or xor-s incoming
packets, D copies incoming packet to both outgoing links.

also been proposed by [13]. To the best of our knowledge, our work is the first to use network
coding for measurements and inference in overlay networks. Independently, passive inference
of network characteristics from an already established multicast, network-coded connection has
been recently investigated in [14].

3 Motivating Example

Consider the network depicted in Fig. 1. Nodes A and B send probes and nodes E and F
receive them. The intermediate nodes C and D can look at the content of the incoming packets
and form packet(s) to forward to their outgoing link(s). Every link loses a packet according to
an i.i.d. Bernoulli distribution, with probability unknown to us. We are interested in estimating
these loss probabilities in all links, namely pAC , pBC , pCD, pDE , pDF .

The basic idea of our scheme is the following. Node A sends to node C a probe packet with
payload that contains the binary string x1 = [1 0]. Similarly, node B sends probe packet x2 =
[0 1] to node C. If node C receives only x1 or only x2, then it just forwards the received packet
to node D; if C receives both packets x1 and x2, then it creates a new packet, with payload
their linear combination x3 = [1 1], and forwards it to node D; more generally, x3 = x1 ⊗ x2,
where ⊗ is bit-wise xor operation. Node D sends the incoming packet x3 to both outgoing links
DE and DF . All operations happen in one time slot, that will be defined later.

In every time period, probe packets (x1, x2) are sent from A, B and may reach E,F , de-
pending on a random experiment: on every link in {AC,BC,CD,DE,DF}, the transmitted
packet is lost with probability plink. The possible outcomes observed at nodes E and F are
summarized in the left two columns of Table 1. The five right columns at the same table show
the combination of loss and success events in the links that lead to the observed outcome. For
example, the outcome (x1, x1) is due to the event (AC = 1, BC = 0, CD = 1, DE = 1, DF = 1)
and happens with probability (1−pAC)pBC(1−pCD)(1−pDE)(1−pDF ). Similarly, we can write
the probability of each of the 10 observed events as a function of the link loss probabilities.

Our goal is to estimate pAC , pBC , pCD, pDE , pDF from the contents of the received probes at
nodes E and F . By repeating the experiment a number of times, we observe how many times
each event occurs. We can then use standard Maximum Likelihood (ML) estimation to infer
the underlying link loss rates. The ML estimator identifies the link-loss rates that would, with
higher probability, result in obtaining our particular set of data.

In contrast, the multicast-based tomography approach would use two multicast trees rooted
at nodes A and B and ending at E and F , in order to cover all five links at least once. Our
approach has the following advantages:
• The two multicast trees approach would not distinguish the loss-rates between links AC and
CD (or similarly BC and CD). Our approach solves this problem. As we will see in Section
4.2, Fig. 1 provides the intuition for identifying a link even in general topologies.
• In every experiment we send exactly one probe on every link, which is the minimum possible
required to cover the entire graph. As we will see in Section 4.3, this observation holds for any
general graph. In contrast, the two multicast trees would overlap and thus send two probes on



Received at Is link ok?
E F AC BC CD DE DF
0 0 Multiple possible events
x1 – 1 0 1 1 0
x2 – 0 1 1 1 0
x3 – 1 1 1 1 0
– x1 1 0 1 0 1
x1 x1 1 0 1 1 1
– x2 0 1 1 0 1
x2 x2 0 1 1 1 1
– x3 1 1 1 0 1
x3 x3 1 1 1 1 1

Table 1: Possible observed probes at nodes E and F , together with the combination of loss (0)
and success (1) in all five links that led to the observed outcome.

each one of the links CD, DE and DF .
• Finally, by looking not only at the number of received probes but also at their contents, we
are able to infer additional information.

The example in this section demonstrated the key ideas and benefits of our approach. The
aforementioned observations gracefully generalize in general graphs.

4 Application to Network Tomography

4.1 Problem Statement
We are given an overlay network represented as a directed graph G = (V,E), and each link
(or edge) e ∈ E of the network has loss probability pe, 0 ≤ pe < 1. We assume that a packet
traversing a link e is lost with probability pe, and that losses are independent. We are also
given a set of S ⊆ V of nodes that can act as sources of probe packets, a set R ⊆ V of nodes
that can act as receivers of probe packets, and a set of links L ⊆ V . The goal is to estimate
the link loss probabilities {pe, e ∈ L}, by sending probe packets from nodes in S to nodes in R.

Our performance measure is a cost function proportional to the link utilization required to
estimate {pe, e ∈ L} with a desired accuracy. We will assume that the desired accuracy can be
achieved by using a rate of α probe packets. Without loss of generality we can assume that
each edge of our graph has capacity α.

This is a typical problem statement in the network monitoring literature [10]. The new
idea in this paper is that we assume that nodes in V have the capability to linearly combine
incoming packets; also, in estimating the link loss-rates we take into account not only the
number of received probe packets but also their contents.

Requirements. To deploy our approach we need nodes in the overlay V to have the following
capabilities:
1. A node can look at the contents of several packets arriving from different incoming links,
and linearly combine them to create an outgoing packet.
2. A node can send replicate and transmit a copy of the same packet to several outgoing links.
3. The node operates in time slots. If a packet does not arrive within the time slot, it is
considered lost.
The first assumption is necessary for schemes that use network coding in overlay networks
[13]. The second assumption is equivalent to overlay multicast. The third is a design issue:
the duration of the time slot (time that the node waits for incoming packets before declaring
them lost) should be carefully chosen based on the frequency of probes, the network delays,
the synchronization between sources etc. The assumed capabilities of the nodes are realistic in
the context of overlay networks, where the capabilities and operations of a node are completely



controlled by the designer/operator of the overlay. This is in contrast to Internet routers,
on which the end-user has no control. Furthermore, we envision using network coding only
for measurement probes and possibly other control traffic, and not necessarily for the bulk of
regular traffic.

Problem Decomposition. The problem can be decomposed into the following parts:
1. Identifiability. For each link e ∈ L, decide whether its loss probability can be inferred.
2. Minimum Cost Covering. Select the paths through which probe packets will be routed,
and the nodes at which they will be linearly combined, so that the links of interest are covered
at minimum cost (to be defined).
3. Packet Design. Select the contents of the packets, and the operations performed at
intermediate nodes.
4. Estimation. Process the collected probes at the receivers and estimate loss-rates for l ∈ L.

4.2 Identifiability Problem
Similarly to [3], we say that a link e ∈ E is identifiable if it is possible to estimate the associated
loss-rate pe by sending probing packets from nodes in S to nodes in R. The following theorem
gives necessary and sufficient conditions for identifiability.

CD is the directed link from node C to node D; (C,D) is a path from C to D.
Theorem 1. Given G = (V, E) and sets S and R, a link CD is identifiable if and only if both
conditions hold:
Condition 1: At least one of the following holds:
(a) C ∈ S.
(b) There exist two edge disjoint paths (X1, C) and (X2, C) that do not employ edge CD with
X1, X2 ∈ S.
(c) There exists two edge disjoint paths (X1, C) and (C, X2) that do not employ CD with
X1 ∈ S, X2 ∈ R.
Condition 2: At least one of the following holds:
(a) D ∈ R.
(b) There exist two edge disjoint paths (D,X1) and (D, X2) that do not employ edge CD with
X1, X2 ∈ R.
(c) There exists two edge disjoint paths (X1, D) and (D, X2) that do not employ CD with
X1 ∈ S, X2 ∈ R.

Sketch of Proof: We claim that a link CD is identifiable if C is a source or a branching point,
and D is a receiver or a branching point. These are the structures depicted in Fig. 2, where we
want to identify the link-loss rate associated with edge CD and interpret the remaining edges
as possibly corresponding to paths. It is easy to see that if both conditions are satisfied link CD
is identifiable. Conversely, assume the first condition is not satisfied. Then C can only receive
one stream of probe packets, since it is connected to one source only. There exists an edge e
through which this stream of probe packets arrives to node C. The link–loss rate associated
with link CD cannot be distinguished from the link loss–rate associated with link e. ¤

The above theorem generalizes the intuition of the motivating example. Similar intuition
has been independently developed in [4], where a 2x2 topology was studied extensively as the
building block of more general topologies; in all previous work, spacing between packets is
important (either keeping them back-to-back or exploiting their distance ∆). The underlying
requirement of this theorem, e.g. for condition (1b), is not necessarily that probes come to
node C through two distinct links, but that two rate–α flows (that have undergone failures
i.i.d. Bernoulli distributed) arrive to node C. This is enforced by the α-capacity links. Under
these assumptions and pe < 1, identifiability is a topological property of the graph that does
not depend on the loss-rate values pe, as was also discussed in [3].

Example. Keeping the same topology shown in Fig. 1, we now vary the sets of sources and
receivers. Fig. 2 depicts four configurations for which link CD is identifiable. Case 1 is our
motivating example; Case 2 is similar to a single multicast tree rooted at A; Case 3 uses sources
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Figure 2: Four configurations that lead to identifiable edge CD (for the same topology).
Case Network Coding Multicast Probes

1 all links DE, DF

2 all links all links
3 all links AC, CB

4 all links no links

Table 2: Identifiable links for the cases in Fig. 2.

A and E and linear combinations whenever two flows meet; Case 4 does the same for sources
A, B and E and is equivalent to an inverse multicast tree (with sink at F ). Table 2 lists which
links are identifiable in all four cases, if we use our network coding approach and if we use the
classic multicast probe approach. While our approach is able to identify all links for any sets
of sources and receivers, this is not always the case for the classic multicast approach.

It is straightforward to see that we can check in polynomial-time whether a link is identifiable
or not, by applying Theorem 1 and examining min-cut conditions on the graph G−{CD}. For
the rest of the paper we will assume that all links in L are identifiable.

4.3 Minimum Cost Covering Problem
Our goal is to estimate the loss probabilities for all links in L at the minimum bandwidth cost.
First, we associate a cost proportional to the flow through a link, and select which links to
utilize to estimate pe for all e ∈ L, so as to minimize the total cost.1 Then, we formulate the
minimum cost cover problem as a Linear Program (LP), which allows to solve it in polynomial
time, provided that intermediate nodes can combine probes. This is an improvement over the
same problem without network coding, which is NP-hard [10].

Intuition. Following an approach similar to [12], we introduce conceptual flows that can
share a link without contending for link capacity. We associate with each edge ei ∈ L one such
conceptual flow f i. We would like each f i to bring probe packets to link ei = uivi ∈ L in a
manner consistent with the conditions of Theorem 1 for edge ei. Conceptual flows corresponding
to different edges ei share edges without contention, and a total flow f measures the utilization
of edges by probe packets. We will use the condition f i ≤ f to express the fact that each packet
in f might be the linear combination of several packets of conceptual flows.

1This cost function assumes that a desired accuracy for pe can be achieved by utilizing rate–α probe packets
in a manner consistent with the conditions in Theorem 1, but independently of the exact paths through which
the probe packets are routed. This is a simplifying, yet standard assumption in network monitoring literature.



Algorithm 1 LP program

min
∑

e

C(e)f(e)

f(e) ≤ a ∀e ∈ E − SE −RE

f(e) = a ∀e ∈ L
Each conceptual flow f i, corresponding to ei = uivi, satisfies the constraints:

f i(e) ≤ f(e) ∀e ∈ E − ei

f i(e) ≥ 0 ∀e ∈ E

f i
in(S) = 0

f i
out(R) = 0

f i
in(u) = f i

out(u) ∀u ∈ V − {S,R, ui, vi}
a ≤ f i

in(ui) ≤ 2a

a ≤ f i
out(vi) ≤ 2a

f i
in(ui) + f i

out(vi) ≥ 4a

Notation. Let C : E → R+ be our cost function that associates a non-negative cost C(e)
with each edge e. We are interested in minimizing the total cost

∑
e C(e)f(e), where f(e) is

the flow through edge e. We also denote by fin(v)/fout(v) the total incoming/outgoing flow of
vertex v and with fin(e)/fout(e) the total incoming/outgoing flow to edge e. We connect all
nodes in S = {Si} to a common source node S through a set of infinite-capacity and zero-cost
edges ES = {SSi}. Similarly, we connect the nodes in R = {Ri} to a common node R using
an infinite-capacity and zero-cost set of edges ER = {RiR}.

Algorithm 1 summarizes the LP program. The idea is to lower-bound the probe rate f(e),
in edge e, given the conceptual flows and the condition f i(e) ≤ f(e). The full proof is omitted
here and will be provided in a longer version [15].

A useful special case. If we want to estimate the loss-rate on all identifiable edges of the
graph (as opposed to a restricted set L) we do not even need to solve the above LP. We can
simply have each source send a probe and each intermediate node forward a combination of its
incoming packets to its outgoing edges, as in Fig. 2. This simple scheme utilizes each edge of
the graph exactly once per time slot and thus has the minimum total bandwidth cost.

4.4 Packet Design Problem
Given the set of flows previously identified, design the content of the probe packets and the
processing intermediate nodes should perform. In particular, if intermediate node A receives
incoming probe packets x1, x2, . . . xl, we want the linear operation of each different subset
of these packets to be distinct. Interestingly, this is related to the problem of designing pn-
sequences for Code-Division-Multiple Access Schemes (CDMA), and to the problem of designing
training sequences for MIMO channels [15]. In general, intermediate nodes can do operations
over a finite field Fq, by treating q bits of each binary probe packets as a symbol of Fq.

A Useful Special Case. If the graph G is a tree, with a subset of the leaves serving as sources
and a subset of the leaves serving as receivers of probe packets, there exists a simple packet
design solution. For n sources we simply use binary probe packets of length n. Source 1 sends
the probe packet [1 0 . . . 0], source 2 the packet [0 1 . . . 0] and generally source i the packet that
has 1 in ith position. When incoming packets meet at a node, the node sends a packet to every
outgoing edge, whose paylaod is the binary xor, i.e. the union of all 1’s.

4.5 Estimation Problem
As illustrated in our motivating example, each experiment consists of a set of probe packets
sent simultaneously (within the same time slot) from the source nodes, traversing the network
and resulting in one of the observed outcomes at the receiver nodes. These outcomes have
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Figure 3: Maximum likelihood estimation of loss rates for the links in Fig.1. Edge links
{AC,BC, DE,DF} have p = 0.1. The middle link (CD) has pCD ∈ {0.1, 0.3, 0.5, 0.7}.
a probability distribution that depends on the underlying link loss probabilities. Note that
receivers will need to share information about received probes, e.g. by sending a summarizing
report to a central node for processing. After a sufficiently large number of experiments, we
can count the number each event appeared.

The estimation problem is to estimate the loss probabilities of the links of interest, based
on the collected data. So far, we have used the Maximum Likelihood (ML) estimation, which
calculates the link-loss rates that would most likely result to the observed appearances.2 To
avoid the complexity of ML, one could use the EM algorithm proposed in [3], to approximate
the optimal ML solution. Moreover, one can use heuristic methods to approximate the exact
solution, that try to pack for example the core structures in Fig. 2 and use the respective ML
estimator for each “simplified” network; we are currently working on such methods in [15].

5 Simulation Results

In this section, we present preliminary simulation results for interesting special cases.
Main example. Consider the main example of Fig. 1. Let us assume that all edge

links (AC,BC,DE,DF ) have the same loss prob. p = 0.1 and that the middle link (CD)
has higher loss prob. pCD; let us consider 4 scenarios, corresponding to different values of
pCD ∈ {0.1, 0.3, 0.5, 0.7}, while keeping p=0.1 on all other links. The goal is to estimate the
loss probability for all links. In Fig. 3, we show the maximum likelihood estimates for an edge
link (AB) and for the middle link (CD). The same color in the top and the bottom plots
indicate that the estimates are obtained for the same case, i.e. value of pCD).

This simple figure confirms what we intuitively expected. The estimates successfully ap-
proximate the actual loss probabilities (pedge = 0.1 for the edge link and pCD for the middle
link, respectively). The MLE oscillates in the first time slots, and converges after it has col-
lected enough probes, (here, in roughly 1000 timeslots, but the number depends on pedge and
pCD). Of course, this is just a proof of concept and a more thorough study of the estimation
error need to be provided in a longer version [15].

Comparing different configurations. For the same topology, let us now consider the
four possible configurations for sending probes, shown in Fig. 2. These can be thought as
core-structures for link-loss estimation. In each case, we use MLE to process the probes at
the receivers. From the simulations, we made the following observations (we omit the plots
due to lack of space.) First, our method was able to identify the loss rates for all links, in
all configurations, as predicted in Table 2. Second, the four configurations in Fig. 2 lead to

2I.e., given an observed number of appearances of events (in our case, number of times each outcome is
observed at the receivers), estimate the model parameters (in our case, link-loss rates), such that the probability
of observing the set of appearances is maximized.



Table 3: Possible outcomes and events for Case 2
Received at Is link ok?

E F B AC BC CD DE DF

– – 0 Multiple possibilities

– – x1 1 1 Multiple possibilities

– x1 – 1 0 1 0 1

– x1 x1 1 1 1 0 1

x1 – – 1 0 1 1 0

x1 – x1 1 1 1 1 0

x1 x1 – 1 0 1 1 1

x1 x1 x1 1 1 1 1 1

different estimation accuracy and convergence time, despite the fact that the topology is the
same and each link is used exactly once per time slot.

The reason is that the four configurations differ in the possible observed outcomes and in
the formula used in MLE (omitted here due to lack of space). For example, Table 3 shows the
possible outcomes, and the events that led to these outcomes, for Fig. 2 - Case 2; clearly, this is
a different set from Table 1 that corresponded to Fig. 2 - Case 1. Which configuration performs
better, depends on the value of the loss probabilities on all links.

General Topologies. It is straightforward to apply our approach to any tree topology. This
was demonstrated in all cases of Fig. 2. Given some leaves that act as sources and receivers,
there is a unique orientation of the links. Source Si sends probe xi = [0 . . . 1 0 . . . 0] (all 0’s and
an 1 at the ith position). Each intermediate node forwards the xor of its incoming probes to all
outgoings. Receivers estimate link loss rates using MLE.

However, a general topology may contain cycles. An example is shown in Fig. 4: a simple
xor of packets can cancel out those appearing for an even number of times in the summation.
To solve this problem, we can allow linear operations (here addition) over a larger field. E.g.
S1 and S2 send x1 and x2; intermediate nodes add incoming packets, e.g. B sends x1 +x2, ... D
sends 2x1 + x2. Notice that if D used xor instead, R1 would get confused: (x1⊗ x2)⊗ x1 = x2.

x1

x2x1

2x1+x2

S1 S2

B

R1 R2

CD

A
x1+x2

x1

x1+x2

x1+x2

S1 S2
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R1 R2

CD

A

Multicast Trees Approach Network Coding Approach 

Figure 4: Example of network with a cycle.

In Fig. 5, we show preliminary simulations for this example. First, the ML estimates for
the network coding approach seem to approximate well the actual link loss rates. Second, we
are able to identify all links; in contrast, the multicast approach - shown in right side of Fig. 4-
would fail, even three multicast trees, as the problem would still be under-constrained. Finally,
we send one probe per link, while the multicast trees would overlap in this topology.

6 Conclusion and Future Work

In this paper, we proposed the use of network coding to improve network tomography in overlay
networks. We demonstrated the potential for improving several aspects of the problem:
• Identifiability: we can estimate the loss rate of any identifiable link - while the multicast trees
approach heavily depends on the topology and the set of sources and receivers.
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• Bandwidth efficiency: exactly one probe is transmitted over every link per time slot, which
is the minimum possible; this is achieved by combining multiple probes into one when flows
overlap, and by intelligently using the content of the probes for inference.
• Complexity: choosing paths for sending probes got reduced from NP-hard to an LP problem
(to identify a subset of links), or eliminated (to identify all links).
• Estimation: there is potential for improving accuracy, by using the content, not only the
number, of received probes.
These benefits come at the overhead of some additional processing at overlay nodes. We are
currently working on extending several aspects of this work, [15], including: probe packet design
algorithms; simplified calculations of ML estimation over acyclic networks; inference of metrics
other than loss rates; and simulations over realistic Internet topologies.
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