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Abstract— The network coding paradigm is based on well as quantifying the throughput benefits of network
q g ghp

the idea that independent information flows can be lin- coding. Many implementations (such as the Microsoft

early combined throughout thg network to give benefitsin  Ayalanche project [4], [5]) use random linear combina-

telrms (r)]f throulghp_ut, c?cmr?lexny etCk- In g?'s paperayve €X- tions for decentralized operations that guarantee such

plore the application of the network coding paradigm to recovery with high probability. In terms of applications,

topology inference. Our goal is to infer the topology of a the network coding idea is well-matched to content dis-

network by sending probes between multiple sources and ~ ~ )
receivers at the edge of the network, while intermediate tribution over peer-to-peer networks as seen by ongoing

nodes locally combine incoming probes before forwarding Projects for this application.
them. In previous tomography work, the correlation be- Motivated by the fact that, in the future, network
tween the observed packet loss patterns has been used tocoding can be deployed in large scale networks, we
infer the underlying topology. In contrast, our main idea  explore how we can utilize it for tomographic appli-
among probe packets in a topology dependent manner ;ye4 in the context of overlay networks [6], since (i)
and alsp develop algorithms that take advantage of these topology inference and performance monitoring [7] are
correlations to infer the network topology from end- . . . -
of particular importance for overlay routing and (ii)

host observations. Preliminary simulations illustrate the . )
performance benefits of this approach. In particular, in N€twork coding could be deployed incrementally on

the absence of packet loss, we can deterministically infer overlay nodes (rather than at the routers). However, our
the topology, with very few probes; in the presence of approach is applicable to any network where network
packet loss, we can rapidly infer topology, even at very coding is deployed. In this paper, we offer a first

small loss rates (which was not the case in previous approach on how to use network coding to improve
tomography techniques). network tomography.

The main insight in utilizing network coding for
topology discovery is that when we do local XOR-
cast networks. if intermediate nodes can do sim oPerations, the observations seen at the end-hosts de-

, ple loca
XORoperations on packets coming on its incomin end on the_ network to_pplogy. Th_erefore, we can
evelop algorithms that utilize this to infer the network

links, then one can achieve the min-cut of the networ, | d inistically with furth .
to each receiver. These linearly combined packets carp 09y ¢ eterm|n|st|c_a ywithout any further active
' articipation by the internal nodes. In the presence

then be utilized at the end receivers to recover thloef . .
of packet losses, just one successfully received probe

original information symbols by solving a set of linear

equations over the finite field [3]. This breakthrougﬁaer network path is S“T“C.'e”" W.'thOUt the need to
collect packet loss statistics. This property enables

idea has spawned a significant effort in applying net;_ .~ . :
work coding to other network topologies, developin rapid discovery of the underlying topology. Moreover,

. : . ) hese ideas can be further combined with characteristics
practical algorithms that achieve this performance as .
Of packet loss patterns for highly lossy networks.
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of packet losses, this technique allows rapid discovery We envisage our approach to be primarily used
of the underlying topology, after only a few probes. Inn overlay networks where nodes could already have
Section 1lI-C, we look at the special case of a singlaetwork coding capabilities. The main argument is
receiver, where the network coding strategy develofbat since the linear combining functionality could be
a sink tree (reverse multicast tree). In Section 1V, wavidely deployed for data delivery using network coding
apply our techniques to an example tree with packed], [5], we can further utilize this functionality for
loss, and we demonstrate that we correctly infer thmographic applications. These techniques can be in-
correct topology with high success probability and fastrementally deployed in overlay networks, where both
convergence. In Section Il, we discuss related wortopology inference is important and where operations
and compare our approach to other topology inferen@an be done in the application layer. For such overlay
techniques. In Section V, we conclude with a shometworks, in terms of requirements, the complexity
discussion about ongoing extensions of these ideas.of the local XORoperations required is not much
Il. RELATED WORK AND POSITIONING more than packet forwarding or multicasting. Since
Over the past decade significant developments ha%e operations are Io_cql, the intermeo!ia_lte _nodes d_o hot
been made in topology inference using only measur eed to forwar_d statistics or connectivity information.
ments at the network edge. The insight behind th Of?o"ef’ the mterm_edlaFe hodes O!O not have tq reveal
ny identity information since they just forward linear

algorithm proposed in [8] was that the correlatio ket binati dnh th .
between end-to-end (multicast) packet loss patterns cgficket combinations, and nence Iere areé no 1ssues
security which might make methods that use node

be used to infer the network topology. If a pair of node§ >¢ : L
po‘ogy P gjsentlty tags less attractive. Also, as it will be seen

patterns, then they should have a common parer'ﬁ). S_ection v, th_e network_ COd”?g approach allows for
Therefore, by clustering such nodes, one can infer tﬁgp'd topology discovery, i.e. using very few probes, as
topology for a binary tree network. The correctnesgompar.eOI to methods baseq on measuring monotonic
of this idea was rigorously established in [9] and thidroperties. we thereforg believe _that n infrastructures
framework was extended to more general trees and cpere the network codlng functionalities are already
other measurements such as delay variance etc. loyed, the cost-benefit trade-off of our proposed

ideas were then extended to unicast networks by [16:]1Pproach for topology inference is quite attractive.

[11], [16]. All these techniques relied on either packet
loss (and success) patterns or other measurements with
“monotonic” properties which grew with number of Consider a tree grapty = (V, E) with n = [V|
traversed links, combined with the correlation structurBodes. A tree withn nodes has exactly — 1 edges,
imposed by a multicast tree. Finally, tomographic apand there exists exactly one path that connects any two
proaches for inferring the link characteristics [14] cayertices. For simplicity, we are going to restrict our
be combined with topology inference [16]. attention to algorithms that infer the topology of binary
The basic idea of network coding was proposed iH€es. These are trees with two type of vertices: leaf-
[1], [2]. In the context of network tomography, networkvertices, that have degree one, and intermediate vertices
coding ideas have been explored to infer link loss raf@at have degree three. Our algorithms directly extend
for known topologies. Active techniques have beeff the case of trees where intermediate nodes have an
proposed in [12] and passive techniques have bedfpitrary degree, by using for example operations over
explored in [13]. These ideas demonstrated that of@ite fields; we defer the detailed description of such
can decrease the bandwidth used by probes, impro@orithms to a full version of the paper.
the accuracy of estimation, and decrease the complexityWe assume that the network can be represented as

[11. ALGORITHMS FOR TOPOLOGY INFERENCE

of selecting paths or trees to send probes. an undirected tree, in the sense that each edge can be
) _ used in either direction, and the connection between
A. Cost-benefit analysis any two vertices is reciprocal. We will also denote by

Since intermediate nodes need to be equipped with = {1,2,..., L} the leaf-vertices (leaves) of the tree
additional functionality (more than packet forwarding)which correspond to end-hosts, that can act as sources
one natural question that needs to be answered ds receivers of probe packets.
the requirements and the benefits of using such anOur algorithms proceed in iterations, where in each
approach. iteration a different set of leaves act as sources and as



receivers of probe packets. The basic idea is that eaf@ceived probe packet; (in total, £; = {1,2}).

iteration successively divides the leaves in the networRimilarly £o = {5,6,7} are nodes containing, and

into groups, and reveals how the groups are connectéde leaves that received probe packetand L3 =

to each other. So in a sense, our approach is a “centb#, 4} containing the leaves that received probe packets

to leaves” approach for revealing the tree structure. 1 & z2. From this information, observed at the edge
We will discuss three type of algorithms: in Sectionof the network, we can deduce that the tree will have

ll-A we assume that there are no link losses in thdhe structure depicted in Figure 2.

network and give adeterministictopology inference

technique. In Section 1lI-B and 1II-C, we give two 1 2 3 4

algorithms when there are link losses.

_ L1 L3
A. Lossless Binary Tree A C
The following example illustrates the basic idea of
our algorithm. P
1 2 3 4 5 ¢ 7
o\ Fig. 2. Structure revealed after one iteration.
A B
C ,
To infer the structure that connects leags6, 7}
D to nodeC, we need to perform a second experiment,
E where we now randomly choose two of these three
7 leaves to act as sources of probe packets. For example,
assume that nodésand6 act as sourceS§; and.S; of
S 6 probe packets. Note that any probe packet leaving node
Fig. 1. A network topology that is an undirected binary tree withD will be_ multicast to all the re_malnmg leaves of the
seven leaves and five intermediate nodes. network, i.e., nodes{1, 2, 3,4} will observe the same

packet. Thus in this sense we can think of nddlas a
single “aggregate—receiver” for this second experiment,
sume that nodes and 7 act as sources; and S, that will observe the common packet received at nodes

of probe packets, while the rest of the nodes act as2:3,4}. Following the same procedure as before,
receivers of probe packets. Thus, nodeand7 send 2ssuming that packets; and z, meet at noder,
probe packets:; = [1 0] andz» = [0 1] respectively, 'eceiversr and{l,2,3, 4} receive packets = z, &
Node A receives packet;, duplicates it and forwards Using this additional mformatlon_we _reflne the |_nferred
it to leaf 2 and to nodeC’. Similarly, nodeD receives network structure as depicted in Figure 3. Since the

packetzs, duplicates it and forwards it to nodewhich

in turn forwards it to leaves, 6. Probe packets; and
xo arrive (within a predetermined time window) to hode
C. Node C creates the packets = x; © zo = [1 1]
and forwardsrs to node B which in turn forwards it
to leavess, 4.

As a result, leaf2 will receive packetz;, leaves
5,6 will receive packetzo, and leaves3, 4 will receive
packetxs = x1 @ x2. Thus our tree will be divided
into three areas{, containingS; and the leaves that

Example 1. Consider the network in Figure 1. As-

'Note that we have chosen the directionality of the edges depend- Fig. 3. Structure revealed after two iterations.

ing on which source reaches the vertex first. If there is variable
delay, then the vertex where the packets x> meet could be . .
different, but this does not affect the algorithm as we will discus&'€€ IS binary, we can deduce from Figure 3 the overall

in Theorem 1. topology of Figure 1. |



The basic ingredients of our algorithm are alreadflgorithm 1 Topology Inference for Lossless Tree
described in the previous example. Let us now describee Iteration 1: Consider the sef of all leaves.

the general algorithm for arbitrary binary trees, summa- — Randomly choose two leaves to act as the

rized in Algorithm 1 and shown in Figure 4. sourcesSy, Sz, sending probes, x5 respec-

tively.
S2 — All other leavesC —{S;, S2} act as receivers.
Lr Observe the first packet each one receives and

° partition £ into £;ULsUL3 as follows. Set;
contains the sourcé; and all receivers that
observer;. SetL, contains the sourcé, and
all receivers that observe,. Set£3 contains
all receivers that observe; = z1 @ x».

— If £3 is not empty, replace the original graph
with the three component§q, Lo, L3, con-
nected through three edges and four vertices
(where component; is connected through

(a) Dividing into three components. node 4;) as depicted in Figure 4(a). If the

S, set L3 is empty, replace the original graph

P with two components; and £,, connected
through a single edge as depicted in Fig-
ure 4(b).

— If componentZ; contains one or two leaves,
replace the component with either one or two
edges, connecting the leaves through node
A; to the rest of the network. If component
L; contains three or more leaves, iteratively
reveal the structure inside the component at
an iterations.

The algorithm proceeds in iterations. Each iteration  Iterationi: Consider one of the previously identi-
is concerned with a part of the binary tree, of whichwe  fied component<; and repeat.
want to infer the topology. LeL be the set of leaves As before, two (randomly chosen) leaves 4h
in (that part of) the tree. In each iteration, exactly two  act as source$§; and S, and all remaining nodes
leaves, out of the sei, are randomly chosen and actas  in £; act as receivers. Nodel; that connects

T3 =21 D T2 Ls

(b) Dividing into two components.

Fig. 4. Edges and vertices of the graph, as revealed by a single
iteration of Algorithm 1.

sources §; and.S;) sending probe packets ( andxs
respectively). All remaining nodes ifh act as receivers.

Intermediate nodes that receive one probe packet (either

x1 Or x9) simply forward it to all outgoing links.
Intermediate nodes that receive both probe packéeR
(linearly combine) them and forward; @ z» to the

L; to the network will also act as an aggregate
receiver: whatever packet is received bywill be
multicasted and received by all leavesdrihat are
not in £;. Repeat the exact same procedure as in
iteration0 to reveal the structure of componefit
Connect the component to the network depending

outgoing link. Probe packets go through the network, on what packet is received by;.

either forwarded and/or being linearly combined, and « Continue until all edges and vertices are identified.
eventually reach the receivers. Each receiver observes Remove vertices of degree two.

one probe packet, either;, or x5 or z; @ x9. The
leaves inL are therefore divided into three sels, Lo
and L3, depending on whether they observed x, or
1 @ xo respectively. until all edges are revealed.

The algorithm starts by considering to be the Algorithm 1 requires the intermediate node of the
leaves of the entire tree. At each iteration, it partitionsetwork to operate as follows. These are standard
the leaves of the tree into the three aréas Lo, £3. functionalities in networks that support network coding.
The algorithm proceeds iteratively within each area




Intermediate Node Operation: If, within a pre- a certain probability. This may have a detrimental effect
determined time windowl’/, an intermediate node on our algorithm. Recall that in the lossless case, at a
receives a single probe packet from one of its adjacegiven iteration, since there exist only one probe packet
neighbors, it replicates it, and forwards it to its othegenerated by each source, the probe packets can at
two neighbors. If it receives two packets from twomost meet at one intermediate node as described in the
different neighbors withini/" it XORs them, and previous section, and delay variability along network
forward the resulting packet to the remaining neighbolinks plays no role. However, when the links are lossy,

we need to send more than one probes during each

Theorem 1:Algorithm 1 terminates in less thgif| iteration as we discuss next. Given packet losses and
iterations, and exactly infers the binary tree topologydelay variability, this might result in probes meeting
Proof Outline at different nodes during the same iteration, causing
Consider at a particular iteration the sourégsandS,.  confusion when dividing the receivers into components.
During this iteration, exactly one probe packet will be This problem is effectively created by the fact that
forwarded from each source towards all other leavese deal with undirected graphs, where a link may
in the network. Each probe packet will traverse thée traversed in opposite directions by probe packets
undirected links in a source to receivers direction. during the same iteration. Thus, an easy method to

Consider now the intermediate nodes in the pAth avoid this problem, is to fix the directionality of the
that connects the two sources. Depending on the deltige edges during each iteration. This can be achieved
associated with the links of the network, there exist twin a completely distributed manner by the first packet
possibilities: arriving at each intermediate node as described in the
e The probe packets; and x, meet (arrive within following.
the same time-windoW?’) at any of the internal nodes Intermediate Node Operation: Each intermediate
on pathP, say nodeA. Node A then forwards their node keeps a table of its neighbors. In each iteration,
XORto its third link, and the iteration “reveals” the it will mark these neighbors as “source” neighbors or
neighboring edges and vertices Aoas depicted in the “sink” neighbors?> The first time during an iteration
configuration in Figure 4(a). Note that, for the purposéhat an intermediate node receives a probe packet
of the algorithm, it plays no role at which vertekthe node waits for a windowd to receive probe packets
probe packets meet. from another of its neighbors. After this windoW
e An alternative possibility is that packets andzy; passes, the node marks all neighbors from which it
“cross each other” while traversing the same link ofeceived packets as sources and all other neighbors
P in opposite directionsi.e., they do not meet at a as sinks. For the remaining duration of the iteration,
node. As a result, given the prescribed operation ¢fie source accepts packets only if they originate from
intermediate nodes, leaves in the network may receis source neighbors. If an intermediate node within
more than one probe packets, of which they only keep time-window W receives a packet from one of its
the first received. In this case we infer the configuratioadjacent source neighbors, it replicates it, and forwards
in Figure 4(b) that reveals one edge. the same packet to all its sink neighbors. If it receives

In any case at each iteration the leaves of the networkore than one packets from two different source
will be divided into two or three more componentsneighbors, it linearly combines them, and forwards
Once a component has two or less leaves, and sini¢eto all its sink neighbors. The node rejects probe
we have a binary tree, we know its structure. [ packets coming from sinks, and does not forward

Note that inferring the binary tree topology withoutpackets towards sources.
any error requires to send at most times two probe
packets through the tree. Also note that since each link We can now extend Algorithm 1 to Algorithm 2, so
will be traversed exactly once at each iteration by &s to operate over lossy networks. The only difference
useful probe packet, delay variations along links of this that, in each iteration, we send instead of one
network do not affect our algorithm. probe packets from each of the sources.

B. Lossy Binary Tree Once this marking is done, it does not change for the duration
. . . . . of the iteration. It may however change for the next iteration.
In this section, we consider trees with packet loss, i.e.3ye might use a special type of probe packet, noting the

a probe packet might be lost while traversing a link withveginning of an iteration.



Algorithm 2 Topology Inference for Lossy Binary Treejnformation back to the tree leaves. However, in appli-
« If areceiver receives only;, then assign it to the cations such as peer-to-peer networks, where the tree

setL;. might have an arbitrarily large number of leaves, and
« If areceiver receives onlys, then assign it to the where not all leaves might be interested in acquiring

setLo. topological information, it is clearly desirable to have
« If areceiver receives bothy andxs, or it receives algorithms where an end terminal can accurately infer

anzi @ z2 packet, then assign it to sé. the overall network topology by processing exclusively
« If a node does not receive anything, then randomliys own observations.

assign it to one of the components. The following algorithm falls in this category. Our

- For aggregate receiver node$;), apply the same basic observation is that, we can use all the algorithms
rule using the union of the aggregate receive the literature for tree topology inference by sending
observations. probe packets over an inverse multicast tree with a

single receiver, and mapping the information collected

by the receiver to measurements over a multicast tree,

Clearly Algorithm 2 has an associated probabilinyVithout any loss of estimation accuracy.
of error, due to the fact that a leaf might not receive - - -
the “correct” probe packet. For example, in a giverAIgorlthm 3 Inverse Multicast Algorithm :
iteration we might make an error either because a node L€t £ denote the set of leaves of the binary tree.
does not receive any probe packet (Wh|Ch can be made® Select one leaf to act as receiver of prObe paCketS.
arbitrarily small by increasing the number of probe  The remaining —1 nodes act as sources of probe

packetsM) or, because it belongs ids; but happens packets. _
to receive onlyz; or only z; packets. This probability ~+ Sources; sendsM times the probe packet, that
again decreases very fast s increases, as we will consists ofL — 2 zeroes and ong at position:.

see in Section IV. We note that, the number of probe ¢ Intermediate nodes in the tre€@Rtheir incoming
packets)/ we need to send to infer the topology within ~ Probe packets and forward it to the outgoing link
a given probability of error, is much smaller than the  that leads to the receiver node.

number of probe packets required by the inference

methods in the literature. Our algorithm will operate Theorem 2:Consider an undirected tree topoloGy
correctly if each node receives exaatlyeprobe packet a|gorithm 3 allows to infer the tree topology, using an
from each of the sources it is connected tdodes in jnyerse multicast tree ovef, with exactly the same
£, and £ are connected to one source while nodegecyracy, as achieved using a multicast tree Gver
in L3 to two sources. The inference methods on thg, the inverse multicast tree the single receiver node
contrary require the reception of sufficient packets tgfers information not only from the number but also
accurately estimate probability distributions. from the content of its received probe packets. The
proof of this theorem relies on the fact that, the error
events experienced on an inverse multicast tree with a
In Sections I1I-A and I1I-B we argued that allowing single receiver are in a one-to-one correspondence with
intermediate nodes in the network XORincoming the error events experiences on a multicast tree with a
probe packets can significantly reduce the numbeingle source (coinciding with the single receiver of

of probes require to infer the network topolodye., the previous case). The proof of this result has partly
improve the bandwidth efficiency. In this section, weappeared in [12].

argue that similar ideas can be used to offer benefits
towards a different goal, locality of operations.

In particular, all tree topology inference methods In this section we simulate our algorithms for the
proposed in the literature that employ multicast treesxample 1, shown in Figure 1 and discussed in Section
require that the set of observations is collected fro. As discussed in Example 1, two iterations are suffi-
all the leaves of the trees and processed by a centrgient to infer the topology of this network: In the first

ized processor that will then disseminate the topolog{eration, leavess; = 1 andS; = 7 act as sources, we
assume that packets meet at nddeand the network

*This equals the success probability of a geometric distributiorgets partitioned into three componenfs = {1,2},

C. Inverse Multicast for Lossy Trees

IV. PRELIMINARY SIMULATION RESULTS



Lo = {5,6,7}, L3 = {3,4}, as shown in Figure 2.
ComponentsZ; and £3 need no further investigation.
In the second iteration, leavés = 5 andS; = 6 act as
sources and we assume that the probe packets meet at
node EZ which reveals the structure shown in Figure 3
and completes the topology inference.

In the case that there is no packet loss, we infer the
topology deterministically in two iterations, and with
only one set of probes per iteration (Algorithm 1). In

% wrong inference
g

the case that the links are lossy, we still perform the ’ % 10gs (same on every

same two iterations, but we sefd sets of probes per (a) Iteration 1: Receivers and 7 act as sources. The
iteration (Algorithm 2). In the lossy case, it is possible iteration infers the topology shown in Figure 2.

that we make an error in inferring the topology. The —

probability of error is increasing with the loss rates of
the linksp, and decreasing with the number of probes
M per iteration.

Figure 5 plots the percentage of inference errors in
each of the two iterations as a function pfand M.

9% wrong inference

For this set of simulations, we assume that all links

have the same loss probability We considered values

of p € [0,10%] and M = 1,...10. We consider an e o-eo
error to be any divergence from the true topology; in LIRS BV P S AV AL B A

a future stage we plan to consider metrics that capture () iteration 2: Receivers and 6 act as sources. The

the distance between the real and the inferred topology. iteration infers the topology shown in Figure 3.

_The reTQ’UI_tS shown in Flgure >are averaged 402000 Fig. 5. Probability of incorrect inference as a function of the link

instantiations of the loss process. loss probabilityp (same for all links) and the number of proh&s
The following observations can be made from thesie the iteration.

graphs. First, as expected, the probability of incorrect

inference is indeed increasing with, since packet

losses may lead to the misclassification of a leaf to

the incorrect component. Note also that, for a fixed V. DiscussioN

number of probe packets and loss ratethe error

probability varies with the iterations, and diminishes as _ :

the size of the inferred network also decreases. SecondAlthough this is the first paper that makes the con-

the probability of incorrect inference is decreasing vergectlon _between n_etw_o rl_< coding and t(_)pology infer-
. : . . . . nce, this observation is in fact not surprising: by com-
rapidly with M: having 2 to 3 probes per iteration

T - bining the incoming information flows, the intermediate
significantly decreases the probability of error, even for g 9 j

. : nodes inherently reveal information about the network
large p. The probability of error was practically 2810 structure. Actively utilizing this property using probe
for more than5 probes per iteration in our simulation. y y g property gp

. _ ; é)ackets is a natural step, given this realization.
It is important to note that this second property i o .
due to the fact that angne correctly received packet 1 n€ Preliminary ideas presented are currently be-
is sufficient for the correct operation of Algorithm 2.9 extended in several directions. The presented al-

For example, if a node receives a mixture sof and gorithms do not fully exploit the informatior_l from
2o, it will be correctly assigned to componef§ even lossy measurements: to do so, we need algorithms that

if several probes are lost. In contrast, the metho@ﬂlo'tntzlmi thz'corrAeIatlt(r)]n |2Frodtgced by link I(?sges
in the tomography literature require each receiver ¢ghd hetwork coding. Anhother direction we are exploring

receive enough probe packets to infer the probability d extending the algorithms proposed in this paper to

arbitrary network topologies. Finally, we are exploring

link loss rate associated with the network links with a% . )
. . . he use of passive measurements to infer the topology
certain accuracy, which requires a much larger number

of probe packets. In situations where network coding is already deployed.
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