
Topology Inference using Network Coding

Christina Fragouli, Athina Markopoulou and Suhas Diggavi

Abstract— The network coding paradigm is based on
the idea that independent information flows can be lin-
early combined throughout the network to give benefits in
terms of throughput, complexity etc. In this paper, we ex-
plore the application of the network coding paradigm to
topology inference. Our goal is to infer the topology of a
network by sending probes between multiple sources and
receivers at the edge of the network, while intermediate
nodes locally combine incoming probes before forwarding
them. In previous tomography work, the correlation be-
tween the observed packet loss patterns has been used to
infer the underlying topology. In contrast, our main idea
behind using network coding is to introduce correlations
among probe packets in a topology dependent manner
and also develop algorithms that take advantage of these
correlations to infer the network topology from end-
host observations. Preliminary simulations illustrate the
performance benefits of this approach. In particular, in
the absence of packet loss, we can deterministically infer
the topology, with very few probes; in the presence of
packet loss, we can rapidly infer topology, even at very
small loss rates (which was not the case in previous
tomography techniques).

I. I NTRODUCTION

The seminal work in [1], [2] showed that for multi-
cast networks, if intermediate nodes can do simple local
XOR-operations on packets coming on its incoming
links, then one can achieve the min-cut of the network
to each receiver. These linearly combined packets can
then be utilized at the end receivers to recover the
original information symbols by solving a set of linear
equations over the finite field [3]. This breakthrough
idea has spawned a significant effort in applying net-
work coding to other network topologies, developing
practical algorithms that achieve this performance as

This work was supported by the Fonds National Suisse Award
No. 200021-103836/1 (for C.Fragouli) and by the SNSF supported
center on wireless sensor networks (for S.Diggavi).

C. Fragouli is with the School of Computer and
Communication Sciences, EPFL, Lausanne, Switzerland,
christina.fragouli@epfl.ch

A. Markopoulou is with the EECS Department., University of
California at Irvine, USA,athina@uci.edu

S. Diggavi is with the School of Computer and
Communication Sciences, EPFL, Lausanne, Switzerland,
suhas.diggavi@epfl.ch

well as quantifying the throughput benefits of network
coding. Many implementations (such as the Microsoft
Avalanche project [4], [5]) use random linear combina-
tions for decentralized operations that guarantee such
recovery with high probability. In terms of applications,
the network coding idea is well-matched to content dis-
tribution over peer-to-peer networks as seen by ongoing
projects for this application.

Motivated by the fact that, in the future, network
coding can be deployed in large scale networks, we
explore how we can utilize it for tomographic appli-
cations such as topology inference. We explore this
idea in the context of overlay networks [6], since (i)
topology inference and performance monitoring [7] are
of particular importance for overlay routing and (ii)
network coding could be deployed incrementally on
overlay nodes (rather than at the routers). However, our
approach is applicable to any network where network
coding is deployed. In this paper, we offer a first
approach on how to use network coding to improve
network tomography.

The main insight in utilizing network coding for
topology discovery is that when we do local XOR-
operations, the observations seen at the end-hosts de-
pend on the network topology. Therefore, we can
develop algorithms that utilize this to infer the network
topology deterministicallywithout any further active
participation by the internal nodes. In the presence
of packet losses, just one successfully received probe
per network path is sufficient, without the need to
collect packet loss statistics. This property enables
rapid discovery of the underlying topology. Moreover,
these ideas can be further combined with characteristics
of packet loss patterns for highly lossy networks.

In this paper, we formulate the problem of topology
inference for a network where (i) multiple sources and
receivers are used at the edge and (ii) network coding
can be used in intermediate nodes. In Section 3, we
propose three algorithms for solving the problem de-
pending on the scenario. In Section 3.1, we develop an
algorithm thatdeterministicallydiscovers the topology,
in one pass, for tree networks without packet losses.
In Section III-B, we show that even in the of presence

of packet losses, this technique allows rapid discovery
of the underlying topology, after only a few probes. In
Section III-C, we look at the special case of a single
receiver, where the network coding strategy develops
a sink tree (reverse multicast tree). In Section IV, we
apply our techniques to an example tree with packet
loss, and we demonstrate that we correctly infer the
correct topology with high success probability and fast
convergence. In Section II, we discuss related work
and compare our approach to other topology inference
techniques. In Section V, we conclude with a short
discussion about ongoing extensions of these ideas.

II. RELATED WORK AND POSITIONING

Over the past decade significant developments have
been made in topology inference using only measure-
ments at the network edge. The insight behind the
algorithm proposed in [8] was that the correlation
between end-to-end (multicast) packet loss patterns can
be used to infer the network topology. If a pair of nodes
have a significant overlap of packet loss and success
patterns, then they should have a common parent.
Therefore, by clustering such nodes, one can infer the
topology for a binary tree network. The correctness
of this idea was rigorously established in [9] and this
framework was extended to more general trees and to
other measurements such as delay variance etc. The
ideas were then extended to unicast networks by [10],
[11], [16]. All these techniques relied on either packet
loss (and success) patterns or other measurements with
“monotonic” properties which grew with number of
traversed links, combined with the correlation structure
imposed by a multicast tree. Finally, tomographic ap-
proaches for inferring the link characteristics [14] can
be combined with topology inference [16].

The basic idea of network coding was proposed in
[1], [2]. In the context of network tomography, network
coding ideas have been explored to infer link loss rate
for known topologies. Active techniques have been
proposed in [12] and passive techniques have been
explored in [13]. These ideas demonstrated that one
can decrease the bandwidth used by probes, improve
the accuracy of estimation, and decrease the complexity
of selecting paths or trees to send probes.

A. Cost-benefit analysis

Since intermediate nodes need to be equipped with
additional functionality (more than packet forwarding),
one natural question that needs to be answered is
the requirements and the benefits of using such an
approach.

We envisage our approach to be primarily used
in overlay networks where nodes could already have
network coding capabilities. The main argument is
that since the linear combining functionality could be
widely deployed for data delivery using network coding
[4], [5], we can further utilize this functionality for
tomographic applications. These techniques can be in-
crementally deployed in overlay networks, where both
topology inference is important and where operations
can be done in the application layer. For such overlay
networks, in terms of requirements, the complexity
of the local XOR-operations required is not much
more than packet forwarding or multicasting. Since
the operations are local, the intermediate nodes do not
need to forward statistics or connectivity information.
Moreover, the intermediate nodes do not have to reveal
any identity information since they just forward linear
packet combinations, and hence there are no issues
of security which might make methods that use node
identity tags less attractive. Also, as it will be seen
in Section IV, the network coding approach allows for
rapid topology discovery, i.e. using very few probes, as
compared to methods based on measuring monotonic
properties. We therefore believe that in infrastructures
where the network coding functionalities are already
deployed, the cost-benefit trade-off of our proposed
approach for topology inference is quite attractive.

III. A LGORITHMS FOR TOPOLOGY INFERENCE

Consider a tree graphG = (V, E) with n = |V |
nodes. A tree withn nodes has exactlyn − 1 edges,
and there exists exactly one path that connects any two
vertices. For simplicity, we are going to restrict our
attention to algorithms that infer the topology of binary
trees. These are trees with two type of vertices: leaf-
vertices, that have degree one, and intermediate vertices
that have degree three. Our algorithms directly extend
to the case of trees where intermediate nodes have an
arbitrary degree, by using for example operations over
finite fields; we defer the detailed description of such
algorithms to a full version of the paper.

We assume that the network can be represented as
an undirected tree, in the sense that each edge can be
used in either direction, and the connection between
any two vertices is reciprocal. We will also denote by
L = {1, 2, ..., L} the leaf-vertices (leaves) of the tree
which correspond to end-hosts, that can act as sources
or receivers of probe packets.

Our algorithms proceed in iterations, where in each
iteration a different set of leaves act as sources and as

receivers of probe packets. The basic idea is that each
iteration successively divides the leaves in the network
into groups, and reveals how the groups are connected
to each other. So in a sense, our approach is a “center
to leaves” approach for revealing the tree structure.

We will discuss three type of algorithms: in Section
III-A we assume that there are no link losses in the
network and give adeterministic topology inference
technique. In Section III-B and III-C, we give two
algorithms when there are link losses.

A. Lossless Binary Tree

The following example illustrates the basic idea of
our algorithm.

E

1 42 3

5 6

7

A B

D

C

Fig. 1. A network topology that is an undirected binary tree with
seven leaves and five intermediate nodes.

Example 1. Consider the network in Figure 1. As-
sume that nodes1 and 7 act as sourcesS1 and S2

of probe packets, while the rest of the nodes act as
receivers of probe packets. Thus, nodes1 and 7 send
probe packetsx1 = [1 0] and x2 = [0 1] respectively.
NodeA receives packetx1, duplicates it and forwards
it to leaf 2 and to nodeC. Similarly, nodeD receives
packetx2, duplicates it and forwards it to nodeE which
in turn forwards it to leaves5, 6. Probe packetsx1 and
x2 arrive (within a predetermined time window) to node
C. Node C creates the packetx3 = x1 ⊕ x2 = [1 1]
and forwardsx3 to nodeB which in turn forwards it
to leaves3, 4.1

As a result, leaf2 will receive packetx1, leaves
5, 6 will receive packetx2 and leaves3, 4 will receive
packetx3 = x1 ⊕ x2. Thus our tree will be divided
into three areas,L1 containingS1 and the leaves that

1Note that we have chosen the directionality of the edges depend-
ing on which source reaches the vertex first. If there is variable
delay, then the vertex where the packetsx1, x2 meet could be
different, but this does not affect the algorithm as we will discuss
in Theorem 1.

received probe packetx1 (in total, L1 = {1, 2}).
Similarly L2 = {5, 6, 7} are nodes containingS2 and
the leaves that received probe packetx2 and L3 =
{3, 4} containing the leaves that received probe packets
x1 ⊕ x2. From this information, observed at the edge
of the network, we can deduce that the tree will have
the structure depicted in Figure 2.

1 42 3

5

C

6 7

A B

D

L3

L2

L1

Fig. 2. Structure revealed after one iteration.

To infer the structure that connects leaves{5, 6, 7}
to nodeC, we need to perform a second experiment,
where we now randomly choose two of these three
leaves to act as sources of probe packets. For example,
assume that nodes5 and6 act as sourcesS1 andS2 of
probe packets. Note that any probe packet leaving node
D will be multicast to all the remaining leaves of the
network, i.e., nodes{1, 2, 3, 4} will observe the same
packet. Thus in this sense we can think of nodeD as a
single “aggregate–receiver” for this second experiment,
that will observe the common packet received at nodes
{1, 2, 3, 4}. Following the same procedure as before,
assuming that packetsx1 and x2 meet at nodeE,
receivers7 and{1, 2, 3, 4} receive packetx3 = x1⊕x2.
Using this additional information we refine the inferred
network structure as depicted in Figure 3. Since the

1 42 3

C
A B

D

5 6

7

L2

L3

L1

Fig. 3. Structure revealed after two iterations.

tree is binary, we can deduce from Figure 3 the overall
topology of Figure 1. ¥

The basic ingredients of our algorithm are already
described in the previous example. Let us now describe
the general algorithm for arbitrary binary trees, summa-
rized in Algorithm 1 and shown in Figure 4.

A

L2

L3

x1

x3 = x1 ⊕ x2

A1

S2

A3

A2

x2

L1

S1

(a) Dividing into three components.

L2

S2

x2

A1 A2x1

L1

S1

(b) Dividing into two components.

Fig. 4. Edges and vertices of the graph, as revealed by a single
iteration of Algorithm 1.

The algorithm proceeds in iterations. Each iteration
is concerned with a part of the binary tree, of which we
want to infer the topology. LetL be the set of leaves
in (that part of) the tree. In each iteration, exactly two
leaves, out of the setL, are randomly chosen and act as
sources (S1 andS2) sending probe packets (x1 andx2

respectively). All remaining nodes inL act as receivers.
Intermediate nodes that receive one probe packet (either
x1 or x2) simply forward it to all outgoing links.
Intermediate nodes that receive both probe packetsXOR
(linearly combine) them and forwardx1 ⊕ x2 to the
outgoing link. Probe packets go through the network,
either forwarded and/or being linearly combined, and
eventually reach the receivers. Each receiver observes
one probe packet, eitherx1, or x2 or x1 ⊕ x2. The
leaves inL are therefore divided into three setsL1, L2

andL3, depending on whether they observedx1, x2 or
x1 ⊕ x2 respectively.

The algorithm starts by consideringL to be the
leaves of the entire tree. At each iteration, it partitions
the leaves of the tree into the three areasL1, L2, L3.
The algorithm proceeds iteratively within each area

Algorithm 1 Topology Inference for Lossless Tree
• Iteration 1: Consider the setL of all leaves.

– Randomly choose two leaves to act as the
sourcesS1, S2, sending probesx1, x2 respec-
tively.

– All other leavesL−{S1, S2} act as receivers.
Observe the first packet each one receives and
partitionL intoL1∪L2∪L3 as follows. SetL1

contains the sourceS1 and all receivers that
observex1. SetL2 contains the sourceS2 and
all receivers that observex2. SetL3 contains
all receivers that observex3 = x1 ⊕ x2.

– If L3 is not empty, replace the original graph
with the three componentsL1, L2, L3, con-
nected through three edges and four vertices
(where componentLi is connected through
node Ai) as depicted in Figure 4(a). If the
set L3 is empty, replace the original graph
with two componentsL1 andL2, connected
through a single edge as depicted in Fig-
ure 4(b).

– If componentLi contains one or two leaves,
replace the component with either one or two
edges, connecting the leaves through node
Ai to the rest of the network. If component
Li contains three or more leaves, iteratively
reveal the structure inside the component at
an iterationi.

• Iteration i: Consider one of the previously identi-
fied componentsLi and repeat.
As before, two (randomly chosen) leaves inLi

act as sourcesS1 andS2 and all remaining nodes
in Li act as receivers. NodeAi that connects
Li to the network will also act as an aggregate
receiver: whatever packet is received byAi will be
multicasted and received by all leaves inL that are
not in Li. Repeat the exact same procedure as in
iteration0 to reveal the structure of componentLi.
Connect the component to the network depending
on what packet is received byAi.

• Continue until all edges and vertices are identified.
• Remove vertices of degree two.

until all edges are revealed.

Algorithm 1 requires the intermediate node of the
network to operate as follows. These are standard
functionalities in networks that support network coding.

Intermediate Node Operation: If, within a pre-
determined time windowW , an intermediate node
receives a single probe packet from one of its adjacent
neighbors, it replicates it, and forwards it to its other
two neighbors. If it receives two packets from two
different neighbors withinW it XORs them, and
forward the resulting packet to the remaining neighbor.

Theorem 1:Algorithm 1 terminates in less than|L|
iterations, and exactly infers the binary tree topology.
Proof Outline
Consider at a particular iteration the sourcesS1 andS2.
During this iteration, exactly one probe packet will be
forwarded from each source towards all other leaves
in the network. Each probe packet will traverse the
undirected links in a source to receivers direction.

Consider now the intermediate nodes in the pathP
that connects the two sources. Depending on the delay
associated with the links of the network, there exist two
possibilities:
• The probe packetsx1 and x2 meet (arrive within
the same time-windowW) at any of the internal nodes
on pathP, say nodeA. Node A then forwards their
XOR to its third link, and the iteration “reveals” the
neighboring edges and vertices toA as depicted in the
configuration in Figure 4(a). Note that, for the purpose
of the algorithm, it plays no role at which vertexA the
probe packets meet.
• An alternative possibility is that packetsx1 and x2

“cross each other” while traversing the same link of
P in opposite directions,i.e., they do not meet at a
node. As a result, given the prescribed operation of
intermediate nodes, leaves in the network may receive
more than one probe packets, of which they only keep
the first received. In this case we infer the configuration
in Figure 4(b) that reveals one edge.

In any case at each iteration the leaves of the network
will be divided into two or three more components.
Once a component has two or less leaves, and since
we have a binary tree, we know its structure. ¤

Note that inferring the binary tree topology without
any error requires to send at most|L| times two probe
packets through the tree. Also note that since each link
will be traversed exactly once at each iteration by a
useful probe packet, delay variations along links of the
network do not affect our algorithm.

B. Lossy Binary Tree

In this section, we consider trees with packet loss, i.e.
a probe packet might be lost while traversing a link with

a certain probability. This may have a detrimental effect
on our algorithm. Recall that in the lossless case, at a
given iteration, since there exist only one probe packet
generated by each source, the probe packets can at
most meet at one intermediate node as described in the
previous section, and delay variability along network
links plays no role. However, when the links are lossy,
we need to send more than one probes during each
iteration as we discuss next. Given packet losses and
delay variability, this might result in probes meeting
at different nodes during the same iteration, causing
confusion when dividing the receivers into components.

This problem is effectively created by the fact that
we deal with undirected graphs, where a link may
be traversed in opposite directions by probe packets
during the same iteration. Thus, an easy method to
avoid this problem, is to fix the directionality of the
tree edges during each iteration. This can be achieved
in a completely distributed manner by the first packet
arriving at each intermediate node as described in the
following.

Intermediate Node Operation: Each intermediate
node keeps a table of its neighbors. In each iteration,
it will mark these neighbors as “source” neighbors or
“sink” neighbors.2 The first time during an iteration
that an intermediate node receives a probe packet3, the
node waits for a windowW to receive probe packets
from another of its neighbors. After this windowW
passes, the node marks all neighbors from which it
received packets as sources and all other neighbors
as sinks. For the remaining duration of the iteration,
the source accepts packets only if they originate from
its source neighbors. If an intermediate node within
a time-windowW receives a packet from one of its
adjacent source neighbors, it replicates it, and forwards
the same packet to all its sink neighbors. If it receives
more than one packets from two different source
neighbors, it linearly combines them, and forwards
it to all its sink neighbors. The node rejects probe
packets coming from sinks, and does not forward
packets towards sources.

We can now extend Algorithm 1 to Algorithm 2, so
as to operate over lossy networks. The only difference
is that, in each iteration, we sendM instead of one
probe packets from each of the sources.

2Once this marking is done, it does not change for the duration
of the iteration. It may however change for the next iteration.

3We might use a special type of probe packet, noting the
beginning of an iteration.

Algorithm 2 Topology Inference for Lossy Binary Tree
• If a receiver receives onlyx1, then assign it to the

setL1.
• If a receiver receives onlyx2, then assign it to the

setL2.
• If a receiver receives bothx1 andx2, or it receives

an x1 ⊕ x2 packet, then assign it to setL3.
• If a node does not receive anything, then randomly

assign it to one of the components.
• For aggregate receiver nodes (Ai), apply the same

rule using the union of the aggregate receiver
observations.

Clearly Algorithm 2 has an associated probability
of error, due to the fact that a leaf might not receive
the “correct” probe packet. For example, in a given
iteration we might make an error either because a node
does not receive any probe packet (which can be made
arbitrarily small by increasing the number of probe
packetsM) or, because it belongs inL3 but happens
to receive onlyx1 or only x2 packets. This probability
again decreases very fast asM increases, as we will
see in Section IV. We note that, the number of probe
packetsM we need to send to infer the topology within
a given probability of error, is much smaller than the
number of probe packets required by the inference
methods in the literature. Our algorithm will operate
correctly if each node receives exactlyoneprobe packet
from each of the sources it is connected to.4 Nodes in
L1 and L2 are connected to one source while nodes
in L3 to two sources. The inference methods on the
contrary require the reception of sufficient packets to
accurately estimate probability distributions.

C. Inverse Multicast for Lossy Trees

In Sections III-A and III-B we argued that allowing
intermediate nodes in the network toXOR incoming
probe packets can significantly reduce the number
of probes require to infer the network topology,i.e.,
improve the bandwidth efficiency. In this section, we
argue that similar ideas can be used to offer benefits
towards a different goal, locality of operations.

In particular, all tree topology inference methods
proposed in the literature that employ multicast trees
require that the set of observations is collected from
all the leaves of the trees and processed by a central-
ized processor that will then disseminate the topology

4This equals the success probability of a geometric distribution.

information back to the tree leaves. However, in appli-
cations such as peer-to-peer networks, where the tree
might have an arbitrarily large number of leaves, and
where not all leaves might be interested in acquiring
topological information, it is clearly desirable to have
algorithms where an end terminal can accurately infer
the overall network topology by processing exclusively
its own observations.

The following algorithm falls in this category. Our
basic observation is that, we can use all the algorithms
in the literature for tree topology inference by sending
probe packets over an inverse multicast tree with a
single receiver, and mapping the information collected
by the receiver to measurements over a multicast tree,
without any loss of estimation accuracy.

Algorithm 3 Inverse Multicast Algorithm
Let L denote the set of leaves of the binary tree.

• Select one leaf to act as receiver of probe packets.
The remainingL−1 nodes act as sources of probe
packets.

• SourceSi sendsM times the probe packetxi, that
consists ofL − 2 zeroes and one1 at positioni.

• Intermediate nodes in the treeXORtheir incoming
probe packets and forward it to the outgoing link
that leads to the receiver node.

Theorem 2:Consider an undirected tree topologyG.
Algorithm 3 allows to infer the tree topology, using an
inverse multicast tree overG, with exactly the same
accuracy, as achieved using a multicast tree overG.
In the inverse multicast tree the single receiver node
infers information not only from the number but also
from the content of its received probe packets. The
proof of this theorem relies on the fact that, the error
events experienced on an inverse multicast tree with a
single receiver are in a one-to-one correspondence with
the error events experiences on a multicast tree with a
single source (coinciding with the single receiver of
the previous case). The proof of this result has partly
appeared in [12].

IV. PRELIMINARY SIMULATION RESULTS

In this section we simulate our algorithms for the
Example 1, shown in Figure 1 and discussed in Section
3. As discussed in Example 1, two iterations are suffi-
cient to infer the topology of this network: In the first
iteration, leavesS1 = 1 andS2 = 7 act as sources, we
assume that packets meet at nodeC, and the network
gets partitioned into three componentsL1 = {1, 2},

L2 = {5, 6, 7}, L3 = {3, 4}, as shown in Figure 2.
ComponentsL1 andL3 need no further investigation.
In the second iteration, leavesS1 = 5 andS2 = 6 act as
sources and we assume that the probe packets meet at
nodeE which reveals the structure shown in Figure 3
and completes the topology inference.

In the case that there is no packet loss, we infer the
topology deterministically in two iterations, and with
only one set of probes per iteration (Algorithm 1). In
the case that the links are lossy, we still perform the
same two iterations, but we sendM sets of probes per
iteration (Algorithm 2). In the lossy case, it is possible
that we make an error in inferring the topology. The
probability of error is increasing with the loss rates of
the linksp, and decreasing with the number of probes
M per iteration.

Figure 5 plots the percentage of inference errors in
each of the two iterations as a function ofp and M .
For this set of simulations, we assume that all links
have the same loss probabilityp. We considered values
of p ∈ [0, 10%] and M = 1, ...10. We consider an
error to be any divergence from the true topology; in
a future stage we plan to consider metrics that capture
the distance between the real and the inferred topology.
The results shown in Figure 5 are averaged over10, 000
instantiations of the loss process.

The following observations can be made from these
graphs. First, as expected, the probability of incorrect
inference is indeed increasing withp, since packet
losses may lead to the misclassification of a leaf to
the incorrect component. Note also that, for a fixed
number of probe packets and loss ratep, the error
probability varies with the iterations, and diminishes as
the size of the inferred network also decreases. Second,
the probability of incorrect inference is decreasing very
rapidly with M : having 2 to 3 probes per iteration
significantly decreases the probability of error, even for
large p. The probability of error was practically zero
for more than5 probes per iteration in our simulation.

It is important to note that this second property is
due to the fact that anyone correctly received packet
is sufficient for the correct operation of Algorithm 2.
For example, if a node receives a mixture ofx1 and
x2, it will be correctly assigned to componentL3 even
if several probes are lost. In contrast, the methods
in the tomography literature require each receiver to
receive enough probe packets to infer the probability of
link loss rate associated with the network links with a
certain accuracy, which requires a much larger number
of probe packets.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

% loss (same on every link)

%
 w

ro
ng

 in
fe

re
nc

e

M=1
M=2
M=3
M=5

(a) Iteration 1: Receivers1 and 7 act as sources. The
iteration infers the topology shown in Figure 2.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

% loss (same on every link)

%
 w

ro
ng

 in
fe

re
nc

e

M=1
M=2
M=3
M=5

(b) Iteration 2: Receivers5 and 6 act as sources. The
iteration infers the topology shown in Figure 3.

Fig. 5. Probability of incorrect inference as a function of the link
loss probabilityp (same for all links) and the number of probesM
in the iteration.

V. D ISCUSSION

Although this is the first paper that makes the con-
nection between network coding and topology infer-
ence, this observation is in fact not surprising: by com-
bining the incoming information flows, the intermediate
nodes inherently reveal information about the network
structure. Actively utilizing this property using probe
packets is a natural step, given this realization.

The preliminary ideas presented are currently be-
ing extended in several directions. The presented al-
gorithms do not fully exploit the information from
lossy measurements: to do so, we need algorithms that
exploit both the correlation introduced by link losses
and network coding. Another direction we are exploring
is extending the algorithms proposed in this paper to
arbitrary network topologies. Finally, we are exploring
the use of passive measurements to infer the topology
in situations where network coding is already deployed.

REFERENCES

[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
Vol. 46, pp. 1204-1216, July 2000.

[2] S-Y. R. Li, R.W. Yeung, and N. Cai, “Linear network coding,”
IEEE Trans. on Information Theory,Vol. 49, 2003.

[3] C. Fragouli, J. Widmer and J. Y. LeBoudec, “Network coding:
an instant primer”,ACM SIGCOM Computer Communication
Review, January 2006.

[4] C. Gkantsidis and P. Rodriguez, “Network coding for large
scale content distribution”, Infocom March 2005.

[5] “Avalanche: File Swarming with Network Coding”,
http://research.microsoft.com/ pablo/avalanche.aspx

[6] D. Andersen, H. Balakrishnan, F. Kaashoek and R. Morris,
“Resilient overlay networks,”in Proc. of 18th ACM SOSP,
Canada, Oct. 2001.

[7] Y. Chen, D. Bindel, H.Song and R.Katz, “An algebraic ap-
proach to practical and scalable overlay network monitoring,”
in Proc. ACM SIGCOMM 2004.

[8] S. Ratnasamy and S. McCanne, “Inference of multicast
routing trees and bottleneck bandwidths using end-to-end
measurements”, Infocom New York 1999.

[9] N.G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley,
“Multicast topology inference from measured end-to-end
loss”, IEEE/ACM Transactions on Networking, 2002.

[10] K. Harfoush, A. Bestavros and J. Byers, “Robust Identification
of Shared Losses Using End-to-End Unicast Probes,”in Proc.
of ICNP 2000,

[11] M. Coates, R. Castro, R. Nowak and Y. Tsang, ”Maximum
Likelihood Network Topology Identification from Edge-Based
Unicast Measurements”,in Proc. ACM Sigmetrics 2002.

[12] C. Fragouli and A. Markopoulou, “Network coding for net-
work tomography”,Allerton, 2005.

[13] T .Ho, B. Leong, Y. Chang, Y. Wen and R. Koetter, “Network
monitoring in multicast networks using network coding”,
International Symposium on Information Theory (ISIT) 2005.

[14] R. Caceres, N. G. Duffield, J. Horowitz and D. Towsley,
“Multicast-based inference of network-internal loss character-
istics”, IEEE Trans. in Inf. Theory, vol. 45, pp. 2462–2480,
1999.

[15] M. Adler, T. Bu, R. K. Sitaraman and D. Towsley, “Tree layout
for internal network characterizations in multicast networks,”
in Proc. of ACM NGC 2001, Nov. 2001.

[16] M. Rabbat, R. Nowak and M. Coates, “Multiple source,
multiple destination network tomography”,in Proc. of IEEE
Infocom 2004.

[17] T.S.E. Ng and H.Zhang, “Predicting internet network distance
with cordinated-based approaches,”in Proc. of IEEE INFO-
COM 2002.

[18] Y.Zhu, B. Li, J. Guo, “Multicast with network coding in
application-layer overlay networks,”in IEEE JSAC, Special
Issue on Service Overlay Networks, 4th Quarter, 2003.

[19] “The network coding webpage,”http://www.netcod.org.

