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Abstract—As the Internet evolves into a ubiquitous communica-
tion infrastructure and supports increasingly important services,
its dependability in the presence of various failures becomes crit-
ical. In this paper, we analyze IS-IS routing updates from the Sprint
IP backbone network to characterize failures that affect IP con-
nectivity. Failures are first classified based on patterns observed
at the IP-layer; in some cases, it is possible to further infer their
probable causes, such as maintenance activities, router-related and
optical layer problems. Key temporal and spatial characteristics
of each class are analyzed and, when appropriate, parameterized
using well-known distributions. Our results indicate that 20 % of all
failures happen during a period of scheduled maintenance activi-
ties. Of the unplanned failures, almost 30% are shared by multiple
links and are most likely due to router-related and optical equip-
ment-related problems, respectively, while 70 % affect a single link
at a time. Our classification of failures reveals the nature and ex-
tent of failures in the Sprint IP backbone. Furthermore, our char-
acterization of the different classes provides a probabilistic failure
model, which can be used to generate realistic failure scenarios, as
input to various network design and traffic engineering problems.

Index Terms—Failure analysis, intermediate system to interme-
diate system (IS-IS) protocol, link failures, modeling, routing.

1. INTRODUCTION

HE core of the Internet consists of several large networks

(often referred to as backbones) that provide transit ser-
vices to the rest of the Internet. These backbone networks are
usually well-engineered and adequately provisioned, leading to
very low packet losses and negligible queueing delays [1], [2].
This robust network design is one of the reasons why the oc-
currence and impact of failures in these networks have received
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little attention. The lack of failure data from operational net-
works has further limited the investigation of failures in IP back-
bones. However, such failures occur almost everyday [3] and
an in-depth understanding of their properties and impact is ex-
tremely valuable to Internet Service Providers (ISPs).

In this paper, we address this deficiency by analyzing failure
data collected from Sprint’s operational IP backbone. The Sprint
network uses an IP-level restoration approach for safeguarding
against failures with no protection mechanisms in the under-
lying optical fiber infrastructure [4]. Therefore, problems with
any component at or below the IP-layer (e.g., router hardware/
software failures, fiber cuts, malfunctioning of optical equip-
ment, protocol misconfigurations) manifest themselves as the
loss of connectivity between two directly connected routers,
which we refer to as an IP link failure.

IS-IS [5] is the protocol used for routing traffic inside the
Sprint network. When an IP link fails, IS-IS automatically
recomputes alternate routes around the failed link, if such
routes exist. The Sprint network has a highly meshed topology
to prevent network partitioning even in the event of widespread
failures involving multiple links. However, link failures may
still adversely affect packet forwarding. While IS-IS recom-
putes alternate routes around a failure, packets may be dropped
(or caught in a routing loop) by routers that lack up-to-date
forwarding information. Moreover, when traffic fails over to
backup paths, links along that path may get overloaded leading
to congestion and eventually to packet loss [6]. Routing re-
convergence may also impose burden on router processors.
Furthermore, if failures happen frequently, route-flapping may
lead to network instability. For all these reasons, failures are a
major concern for an operational network.

In this work, we collect IS-IS routing updates from the
Sprint network using a passive listener, located at the New York
point-of-presence (PoP). These updates are then processed to
extract the start-time and end-time of each IP link failure. The
data set analyzed consists of failure information for all links in
the continental U.S. from April to October 2002.

The first step in our analysis is to classify failures into dif-
ferent groups according to their underlying cause, i.e., the net-
work component that is responsible. This is a necessary step
for developing a failure model where the faults of each com-
ponent can be addressed independently. Our classification pro-
ceeds as follows. First, link failures resulting from scheduled
maintenance activities are separated from unplanned failures.
Then, among the unplanned failures, we identify shared failures,
i.e., failures on multiple IP links at the same time;among shared
failures, we further distinguish those that have IP routers in
common and those that have optical equipment in common. The
remaining failures represent individual link failures, i.e., faults
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that affect only one link at a time; for the individual failures,
we further differentiate groups of links, based on the number of
failures on each link.

The second step in our analysis is to provide the spatial and
temporal characteristics for each class separately, e.g., the dis-
tributions of the number of failures per link, time between fail-
ures, time-to-repair, etc. When possible, we provide parameters
for these characteristics using well-known distributions.

Our results indicate that 20% of all failures can be attributed
to scheduled network maintenance activities. Of the remaining
unplanned failures, 30% can be classified as shared. Half of the
shared failures affected links connected to a common router,
pointing to a router-related problem; the rest affect links that
share optical infrastructure, indicating an optical layer fault. The
remaining 70% of the unplanned failures are individual link fail-
ures caused by a variety of problems. Interestingly, the failure
characteristics of individual links vary widely less than 3% of
the links in this class contribute to 55% of all individual link
failures.

The contributions of this work are as follows. First, we per-
form an in-depth analysis of IS-IS failure data from a large op-
erational backbone. This has not been attempted before, largely
due to the lack of availability of such data sets. Second, we clas-
sify failures into classes according to the behavior they exhibit at
the IP-layer, such as their time synchronization/overlap and their
occurrence on particular links or routers. In some cases, these
IP-layer characteristics, combined with supplementary informa-
tion, can assist the operator to infer, or at least to narrow-down,
the possible cause of failure. Finally, we provide the statistical
characteristics of each class of failures and, when appropriate,
we approximate them with well-known distributions. This pro-
vides a probabilistic failure model: one can generate failures ac-
cording to the statistics for each class and then superimpose.
This model can be used to generate realistic failure scenarios,
as input to network design and traffic engineering problems that
take failures into account.

An earlier version of this work appeared in [7]. This journal
paper improves that work and extends it with additional mate-
rials, including: 1) the analysis of shorter (one month) time pe-
riods in order to understand how the statistical characteristics
vary with time and 2) an analysis of SONET alarms in conjunc-
tion with the IS-IS data.

The paper is organized as follows. Section II presents related
work in the area of failure analysis and fault management. Sec-
tion III describes the data collection process in the Sprint back-
bone and provides an overview of the data set under study. Sec-
tion IV describes our classification methodology. Section V de-
scribes the results of our classification of failures and the char-
acteristics of each identified class. Section VI applies the clas-
sification and characterization methodologies to shorter (one-
month) time periods and discusses how the statistical character-
istics of each failure class vary with time. Section VII discusses
how our characterization can be used to build a failure model,
and identifies open issues for further investigation. Section VIII
concludes the paper.

II. RELATED WORK

The availability of spare capacity and sound engineering
practices in commercial IP backbones makes it easy to achieve

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 4, AUGUST 2008

traditional quality-of-service (QoS) objectives such as low loss,
latency, and jitter. Recent results show that the Sprint network
provides almost no queueing delays [8], [2], negligible jitter [2]
and is capable of supporting toll-quality voice service [9].

On the other hand, failures can degrade network perfor-
mance by reducing available capacity and disrupting IP-packet
forwarding. Common approaches for ensuring network sur-
vivability in the presence of failures include protection and
restoration at the optical layer or the IP-layer [10], [11], [4].
A significant amount of effort has been made to achieve
sub-second convergence in IS-IS [12]. In addition, a number
of new approaches have been proposed to account for back-
bone failures, including the selection of link weights in the
presence of transient link failures [13], [14], deflection routing
techniques to alleviate temporary link overloads due to failures
[6], network availability-based service differentiation [15], and
failure insensitive routing [16].

All the above techniques react to failures; therefore, their per-
formance depends on the understanding of the characteristics
of the underlying failures. However, such an understanding has
been limited partly by a lack of measurement data from oper-
ational networks, and partly by a focus on traditional QoS ob-
jectives such as loss and delay. In some cases, traceroutes were
used to study the routing behavior in the Internet; these include
studies on routing pathologies, stability, and symmetry [17],
stationarity of Internet path properties [18], and evaluation of
routing-based and caching techniques to deal with failures [19].
Other times, routing updates are used for failure analysis. For
example, in [20], OSPF routing updates were used, although the
primary focus was on studying stability of inter-domain paths.
The authors continued their work in several directions, including
an experimental study of OSPF, in [21]: they studied routing in-
stability, and large scale anomalies caused mainly by external
routing protocols. In [22], there is a case study on the character-
istics and dynamics of OSPF link state advertisements (LSAs).

In [3], we used IS-IS routing updates to do a preliminary anal-
ysis of link failures on the Sprint backbone. In [7], we studied
a larger and more recent data set, and characterized the statis-
tical behavior of failures. Here, we improve [7] and extend it by
additional materials, namely, the SONET alarms (Section I'V.F)
and the per-month analysis (Section VI).

References [23] and [24] are some recent developments in
failure diagnosis in IP networks, with emphasis on shared risk
link groups (SRLG) and cross IP and optical layers fault local-
ization. In [23], the MinSetCover technique was developed to
deal with the underdeterminedness of mapping an IP fault to
the underlying physical cause. In [25], the SRLG-IP mapping
problem is modeled as a Bayesian network and the fact that dif-
ferent SRLGs have different probabilities of failure is exploited
to better infer the SRLG responsible for an IP-level failure. In
[24], Shrink is proposed to extend the Bayesian approach in the
presence of inaccurate SRLG-IP mappings and noisy measure-
ments.

III. FAILURE MEASUREMENTS

In this section, we describe the Sprint network, we discuss
the types of failures that impact IP connectivity, we present our
methodology for extracting link failure information from IS-IS
routing updates and we summarize the data set.
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A. Design of the Sprint IP Backbone

The Sprint IP topology in the continental US consists of a
collection of PoPs, in various cities, connected via high speed
links. Each PoP consists itself of a number of backbone and ac-
cess routers: the first connect to other PoPs and the latter connect
to clients and to backbone routers. We refer to all the links be-
tween those routers as ’logical’ links, or IP links or just links.
This logical IP network is layered over a dense wavelength-divi-
sion multiplexing (DWDM) optical infrastructure with SONET
framing.!

B. Failures With an Impact on IP Connectivity

There are two main approaches for sustaining end-to-end
connectivity in IP networks in the event of failures: protection
and restoration. Protection is based on fixed and predetermined
failure recovery, with a working path set up for traffic for-
warding and an alternate protection path provisioned to carry
traffic if the primary path fails. Restoration techniques attempt
to find a new path on-demand to restore connectivity when a
failure occurs. Protection and restoration mechanisms can be
provided either at the optical or at the IP layer, with different
cost-benefit tradeoffs [4], [11].

The Sprint IP network relies on IP layer restoration (via IS-IS
protocol) for failure recovery. All failures at or below the IP
layer that can potentially disrupt packet forwarding manifest
themselves as the loss of IP links between routers. The failure or
recovery of an IP link leads to changes in the IP-level network
topology. When such a change happens, the routers at the two
ends of the link notify the rest of the network via IS-IS. There-
fore, the IS-IS update messages constitute the most appropriate
data set for studying failures that affect connectivity.

Failures can happen at various protocol layers in the network
for different reasons. At the physical layer, a fiber cut or a failure
of optical equipment may lead to loss of physical connectivity.
Hardware failures (e.g., linecard failures), router processor over-
loads, software errors, protocol implementation and misconfig-
uration errors may also lead to loss of connectivity between
routers. When network components (such as routers, linecards,
or optical fibers) are shared by multiple IP links, their failures
affect all the links. Finally, failures may be unplanned or due
to scheduled network maintenance. Note that at the IS-IS level,
we observe the superposition of all the above events. Inferring
causes from the observed IS-IS failures is a difficult reverse en-
gineering problem.

C. Collecting and Processing ISIS Updates

We use the Python Routing Toolkit (PyRT)? to collect IS-IS
Link State PDUs (LSPs) from our backbone. PyRT includes
an IS-IS “listener” that collects LSPs from an IS-IS enabled
router over an Ethernet link. The router treats the listener in the

1Tt is worth mentioning that the Sprint network is designed with sufficient
redundancy and careful engineering to be robust in case that some links fail. For
example, there are multiple parallel links connecting a pair of PoPs; furthermore
these links are terminated on different router within the same PoP. Inside a single
POP, backbone routers are connected in a fully meshed topology; each access
router connects customers to two different backbone routers. Among all PoPs, a
full mesh would be prohibitively expensive; however there is still a large degree
of connectivity and the logical links are carefully chosen to use disjoint physical
links. Finally, sufficient capacity is provisioned to carry the re-routed traffic in
the case of failures.

2The source code is publicly available at http://ipmon.sprint.com/pyrt

same way as adjacent routers: it forwards to the listener all LSPs
that it receives from the rest of the network. Since IS-IS broad-
casts LSPs through the entire network, our listener is informed
of every routing-level change occurring anywhere in the net-
work, provided that there are no partitions of the network due
to failures. The listener is passive in the sense that it does not
transmit any LSPs to the router. The session between the lis-
tener and the router is kept alive via periodic IS-IS keepalive
(Hello) messages. Upon receiving an LSP, the listener prepends
it with a header in MRTD format (extended to include time-
stamp of micro-second granularity) and writes it out to a file.
The data were collected from a listener at a Sprint backbone
POP in New York.

Whenever IP level connectivity between two directly con-
nected routers is lost, each router independently broadcasts a
“link down” LSP through the network. When the connectivity
is restored, each router broadcasts a “link up”” LSP. We refer to
the loss of connectivity between two routers as a link failure.

The LSPs from the two ends of a link reporting loss or restora-
tion of IP connectivity may not reach our listener at the same
time. The start of a failure is recorded with the MRTD timestamp
of the first LSP received at our listener that reports “link down”.
The end of each failure is recorded with the MRTD timestamp
of the second LSP received at our listener that reports “link up”.
This asymmetry is conforming with how the IS-IS protocol re-
acts to routing updates. As soon as a router receives the first LSP
reporting an “link down,” it considers the IP connectivity to be
lost without waiting for the second LSP. Hence, the first LSP is
sufficient to trigger a route re-computation, which may lead to a
disruption in packet forwarding. However, in order to consider
the IP connectivity restored, a router waits until it receives LSPs
reporting “link up” from both ends of a link. In the rest of the
paper, we refer to the time between the start and the end of a
failure, as defined above, as the time-to-repair for the failure.

The authors also note that IS-IS LSPs may contain weight
changes that might give additional information; however, this
has not been considered in this work.

D. Failures Data Set

Using the steps described above, we can determine the start
and end times for failures on every link in the Sprint backbone.
The data are collected for the period between April 1 and Oc-
tober 21, 2002, in the continental US. This data set involves a
large number of links, routers and POPs (in the order of thou-
sands, hundreds and tens respectively). We consider that link
failures with time-to-repair longer than 24 hours (which were
3.7% of all failures) are due to links being decommissioned
rather than to accidental failures, and therefore we exclude them
from the failures data set. Indeed, the usual time-to-repair for
links in active use is in the order of hours and not in the order
of days.

Fig. 1 shows the failures in the data set under study, across
links and time. A single dot at (¢, [) is used to represent a failure
that started at time ¢, on link /. One can see that failures are
part of the everyday operation and affect a variety of links. We
also observe that the failures occurrence follows patterns, such
as (more or less prominent) vertical and horizontal lines of dif-
ferent lengths. In the rest of the paper, we further use these vi-
sual patterns as guidance for our failure classification. The scale
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Fig. 1. Data set under study: failures in continental U.S. between April 1 and
October 21, 2002.

of the figure is chosen to emphasize the horizontal and vertical
patterns. We should mention that the times-to-repair are not rep-
resented in the figure and the area covered by the dots represents
neither the total duration nor the impact of link failures on the
Sprint backbone.

Although we cannot report the absolute number of failures,
for proprietary reasons, we can give a sense of the size and rep-
resentativeness of the data set, by mentioning that it involved
thousands of different links and hundreds of different routers,
i.e., on the order of the actual number of links and routers in the
continental U.S. backbone. Failures were split roughly equally
between inter- and intra-POP links, although there are ten times
more intra- than inter-POP links in the Sprint backbone.

E. Additional Data Sets

The IS-IS logs is the main data set used in this paper to iden-
tify and characterize failures at the ISIS level. However, in our
methodology, we also use two auxiliary data sets to confirm
that some failures are optical-related. In Section IV-D, we use
the IP-to-optical mapping and in Section IV-F we use SONET
alarm logs; see the respective sections for a detailed description.
These sets are not as complete (over the seven months period
under study) as the main ISIS data set, and are used only for
supplementary confirmation.

IV. CLASSIFICATION METHODOLOGY

This section describes our methodology for classifying fail-
ures according to the patterns observed in the IP-layer data. In
some cases, we also attempt to infer their possible causes, using
heuristic observations and evidence from supplementary data.
However, the main purpose of this classification is not to ac-
curate infer the cause of each failure. The main purpose is to
partition the entire data set into smaller classes with common
patterns at the IP layer. Once the classes are identified, and the
statistics characterized, the interested user will be able to gen-
erate failures for each class separately and then superimpose.

A. Overview

Our approach is to use several hints obtained from the IS-IS
failure data to identify groups of failures, and try to infer the dif-
ferent causes behind them when possible. A visual inspection
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of Fig. 1 provides insights into how to perform this classifica-
tion. We observe that the failures are not uniformly scattered and
there are vertical and horizontal lines. The vertical lines corre-
spond to links that fail at the same time or to links that fail close
in time but appear almost aligned in the plot. The horizontal
lines correspond to links that fail more frequently than others.
Apart from these lines, the remaining plot consists of roughly
uniformly scattered points.

Our classification of failures is summarized in Fig. 2 and con-
sists of the following steps. We first separate failures due to
scheduled Maintenance Window from Unplanned failures. We
analyze the unplanned failures in greater depth since these are
the ones that an operator seeks to minimize. We distinguish be-
tween Individual Link Failures and Shared Link Failures, de-
pending on whether only one or multiple links fail at the same
time: when several links fail at the same time, we call this group
of failures an “event” of shared failures. Such events indicate
that the involved links share a network component that fails.
The shared component can be located either on a common router
(e.g., alinecard or route processor in the router) or in the under-
lying optical infrastructure (a common fiber or optical equip-
ment). Therefore, we further classify shared failures into three
categories according to their cause: Router-Related, Optical-
Related and Unspecified (for shared failures where the cause
cannot be clearly inferred). We divide links with individual fail-
ures into High Failure and Low Failure Links depending on the
number of failures per link. In Fig. 2, maintenance and shared
failures correspond to the vertical lines, high failure links corre-
spond to the horizontal lines, and low failure links correspond
to the roughly uniform plot that remains after excluding all the
above classes of failures.

We now consider each class separately and describe: 1) how
we decide whether a failure belongs to this specific class and 2)
how we obtain partial confirmation for the inferred cause.

B. Weekly Maintenance Window

Failures resulting from scheduled maintenance activities are
unavoidable in any network. Maintenance is usually scheduled
during periods of low network usage, in order to minimize the
impact on performance. The maintenance window in the U.S.
Sprint backbone network is Mondays 5 am-2 pm, UTC time. It
turns out that failures during this window are responsible for the
most prominent vertical lines in Fig. 1.

We would like to note that it is possible that some unplanned
failures accidentally happened during the maintenance window.
However, several facts confirm our maintenance hypothesis.
First, we observed that the overwhelming majority of failures
during the maintenance window were grouped into events on
a few routers and happening inside the same POP(s), clearly
indicating maintenance activities in these POPs. Second, the
durations of these failures were in the order of tens of minutes,
even hours, which could be due to router reboots and/or updates
and human intervention. Third, we were able to confirm the
scheduled operation activities for the most prominent vertical
lines in September — October, which all happened during the
weekly maintenance windows. Finally, the few unplanned fail-
ures that were possibly misclassified during the maintenance,
have very low impact on users in the U.S., thanks to the choice
of the maintenance window to be off peak-hours. Conversely,



MARKOPOULOU et al.: CHARACTERIZATION OF FAILURES IN AN OPERATIONAL IP BACKBONE NETWORK 753

Data Set

failures during
aintenance?

es -
y Maintenance

yes Simultaneous
(router-related)

nter-POP links
& no common
router?

no

simultaneous
ailures?

no

Overlapping
ailures?

no

Shared,
optical -related

unspecified

yes

High Failure
no
A 77y

(a)
Data Set

l—» Maintenance

Unplanned Failures

Shared Link Failures ¢
Individual Link Failures

f%

High Failure Low Failure
Links Links

Simultaneous Overlapping

(Router Related)
Optical Related ~ Unspecified

(b)

Fig. 2. Classification of failures. (a) Classification methodology. (b) Classifi-
cation results.

it is possible that some maintenance events take place outside
this window, and will be studied within the other categories.

C. Simultaneous Failures

In the shared failures class, we first identify failures that
happen simultaneously on two or more links. Failures on
multiple links can start or finish at exactly the same time, when
a router reports them in the same LSP. For example, when a
linecard fails, a router may send a single LSP to report that
all links connected to this linecard are going down. When our
listener receives this LSP, it will use the same MRTD time-
stamp as the start for all the reported failures. Similarly, when a
router reboots, it sends an LSP reporting that many of the links
connected to it are going up. When our listener receives this
LSP, it will use the same MRTD timestamp as the end for all
the reported failures. (However, it still needs to receive an LSP
from the other end to declare the end of a failure.)

In our data, we identify many such cases. An example is
shown in Fig. 3(a): 4 links are going down at exactly the same
time Titar¢ (and 3 out of 4 come up at the exactly same time
Tena). We refer to such failures as simultaneous failures and we
group them into events. Simultaneous failures start and/or finish
at the exact same time, with an accuracy of microseconds. We
conjectured that they are more likely to be due to a common
cause (e.g., they may share a common component which fails

Tstart

Tend
| L
link # 0 ! S
I
link 2 :—;— |
1

link3 —————
]

I
1 I
— I I
I
I

link 4 ! |
| 1

(a) Event of failures b Event of

starting simultaneously overlapping failures

Fig. 3. Example events of simultaneous and overlapping failures. The time is
according to the MRTD prepended at the IS-IS listener.

and causes all links to go down together) rather than to a coin-
cidence. Furthermore, a router must have reported in the same
LSP that these links go down together; our listener receives this
LSP and prepends the same MRTD timestamp on all failures —
that is why they appear to fail simultaneously.

We then checked this conjecture. For every event of simulta-
neous failures found in the data set, we verified that all involved
links are indeed connected to a common router. And conversely,
there is no simultaneous failure event that does not involve a
common router, which confirms our intuition. Therefore, these
events (simultaneous failures on links connected to the same
router) are due either to problems on the common router (such as
a router crash or reboot, a linecard failure or reset, a CPU over-
load, software or hardware error or human misconfiguration) or
due to problems at the optical layer outside the router (if the
failing links are carried over the same fiber). However, they are
definitely related to this router for all modeling purposes. There-
fore, in the rest of the paper, we refer to simultaneous failures as
Shared Router-Related. Unfortunately, without any router logs
it is not possible to determine for sure whether simultaneous
failures are also caused by a failure in the common router.

Occasionally, a link in a router event may come up later than
the others, as shown in Fig. 3(a). This can happen either because
the link comes up later (e.g., router interfaces coming up one-by-
one) or because the LSP from the other end of the link reaches
our listener later (either delayed or lost). However, in 50% of
the router events identified in the data set, all links came up at
the exact same time; in 90% of the cases the last link came up
no later than 2 min after the first link.

D. Overlapping Failures

After excluding the simultaneous failures, we relax the time
constraint from “simultaneous” to “overlapping,” i.e., we look
for events where all failures start and finish within a time
window of a few seconds. An example is shown in Fig. 3(b),
failures on all four links start within Wy;,,+ and finish within
Wena seconds from each other.

Overlapping failures on multiple links can happen when
these links share a network component that fails and our lis-
tener records the beginning and the end of the failures with
some delays Wit and Wepq. For example, a fiber cut leads to
the failure of all IP links over the fiber, but may lead to over-
lapping failures in our listener for several reasons. First, there
are multiple protocol timers involved in the failure notification
and in the generation of LSPs by the routers at the ends of the
links. Most of these timers are typically on the order of tens
of milliseconds up to a few seconds. The dominant ones are
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TABLE 1
SUMMARY OF OVERLAPPING EVENTS
Classification % %
of event events | failures
Overlapping 100% 100%
Optical-Related | 75% 80%
Unspecified 25% 20%

the IS-IS carrier delay timer [3] with default 2 s to report a
link going down and 12 s to report a link going up. The timers
can be configured to have different values on different routers.
Finally, the LSPs from the two ends of the link can reach our
listener through different paths in the network and thus may
incur different delays; or an LSP may be lost, leading to an
additional retransmission delay.

The choice of windows, Wt...+ and W,,q matters for a mean-
ingful definition of overlapping failures. If they are chosen too
long, failures that overlap by coincidence may be wrongly inter-
preted as shared failures. Windows that are too short may fail to
detect some shared failures. We choose Wgtapt and Wepq to be
2 and 12 s to match the default timers used to report a link down
or up respectively. We also varied W, from 0.5 to 10 s and
Wena from 0.5 to 20 s and observed that the number of overlap-
ping failures or events is relatively insensitive around the chosen
values.

We now focus on identifying the network component that is
responsible for the overlapping failures. Links can share com-
ponents either at a router or in the optical infrastructure.

1) Optical-Related: Among all overlapping events, we
identify those that involve only inter-POP links and that do not
share a common router. It turns out that 75% of all overlapping
events and 80% of all overlapping failures are of this type, see
Table I. We consider those events to be Optical-Related for the
following reason. Since the links in the same event have no
router in common, an explanation for their overlapping failures
is that they share some underlying optical component that fails,
such as a fiber or another piece of optical equipment.

To check this conjecture, we use an additional database: the
IP-to-Optical mapping of the Sprint network. This database pro-
vides the mapping from the IP logical topology to the under-
lying optical infrastructure. It provides the list of optical equip-
ment used by every IP link. The optical topology consists of sites
(cities where optical facilities are located) and segments (pair of
sites connected with an optical fiber). IP links share necessarily
some sites or segments.

Table II summarizes our findings in the IP-to-Optical data-
base. Out of all overlapping events that we classify as optical-re-
lated (i.e., inter-POP without a common router), we were able
to find 93% of them in the database (meaning that all links in
the same event were found in the database). Not all links are
found in the database due to changes in the mapping. For each
“overlapping” event found in the database, we check whether
all (not just a subset of) links in the event share some optical
components. We find that 96% of the events found in the data-
base, involve links that all share at least one site; 98% of the
found events involve links that all share at least one segment. In
fact, links in the same event share even more than just one site or
segment. They share from 1 up to 30 sites (8.3 on average) and
from 1 up to 27 segments (7.3 on average). These findings val-
idate our conjecture that the events classified as optical-related
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TABLE II
USING THE IP-TO-OPTICAL MAPPING TO CONFIRM THAT LINKS IN THE SAME
OPTICAL EVENT SHARE AN OPTICAL COMPONENT

| Optical-Related Events \ % |
Found in the database
All links have common site(s)
All links have common segment(s)

93% of optical events
96% of found events
98% of found events

are most likely due to the failure of some optical component
shared by multiple IP links.

2) Unspecified: The overlapping failures that are not classi-
fied as optical-related fall in this class. These include overlap-
ping failures on inter-PoP links connected to the same router,
because the cause of the problem is ambiguous: it could be
a problem at the router or at the optical infrastructure. They
also include overlapping failures of links in different PoPs, that
clearly have no components in common and are due to coinci-
dence. For all these events, we are not able to satisfactorily infer
their causes and we call them Unspecified. We do not attempt to
further analyze them as they account for only 20% of the over-
lapping failures (see Table I), which is less than 3% of all the
unplanned failures.

E. Individual Link Failures

After excluding all the above classes of failures from the data
set, we refer to the remaining failures collectively as Individual
Failures because they affect only one link at a time.

Let n(1) be the number of individual failures for link [, where
l=1,...,L. Let the maximum number of failures in a single
link be max n = max;(n(l)). For proprietary reasons, we show
the normalized value nn(l) = 100 - n(l)/ max n, instead of the
absolute number n(l). In Fig. 4, we plot nn(l), for all links in
decreasing order of number of failures. There are several inter-
esting observations based on this graph. First, links are highly
heterogeneous: some links fail significantly more often than
others, which motivates us to study them separately. Second,
there are two distinct straight lines in this log—log plot in Fig. 4.
We use a least-square fit to approximate each one of them with
a power-law: n(l) o 1797 for the left line and n(l) o [=135
for the right line. Notice that both the absolute (n(l)) and the
normalized (nn(l)) values have the same slope; therefore, the
interested reader is able to use the normalized value to simu-
late this behavior. The dashed lines intersect approximately at a
point that corresponds to 2.5% of the links and to a normalized
number of failures nn(l) = 15.2. We use this as the threshold
(THR = 15.2) to distinguish between two sub-classes: the
High Failure Links (nn(l) > T H R) and the Low Failure Links
(1 < nn(l) < THR).

We would like to emphasize that the distinction between high
and low failure links is based on the number of failures, and
not on the total downtime or time-to-repair, which is a different
aspect and will be addressed in the Results section. A link failing
for a long period of time, and another link failing repeatedly
over a very short time period can impact the performance of the
network in very different ways. In [26], we have followed-up on
that and defined different metrics to measure the impact of such
failures.

High failure links represent only 2.5% of all links but ac-
count for more than half of individual failures. All of them
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were backbone links; most of them were connected to different
POPs; half of them had a router in common with at least another
high-failure link. High failure links may be in an advanced stage
of their lifetime and their components fail frequently; or they
may be undergoing an upgrade or testing operation for a period
of time. The remaining half of individual failures happen on low
failure links. Unlike all previous failure classes, low failure links
do not have a prominent pattern either in time or across links.

It is difficult to infer the cause of individual failures based
merely on the IS-IS data; unlike the shared failures, there is no
timing correlation with other links to exploit. They could be due
to optical or any other of the possible reasons. That is partially
why we turned to additional data sets.

F. SONET Alarms

In order to further confirm our classification methodology
(and, in particular, to confirm the shared-optical related failures
and explore the individual failures), we tried to match the IS-IS
failures with failures reported in signals by the SONET layer,
which we will refer to as the SONET alarms. We had SONET
alarm logs available for the four later months of the measure-
ment period, from July to October 2002.

A number of alarms from the SONET layer can be recorded
and timestamped by routers in the Sprint network. Of these
alarms, the “Section Loss of Signal” (SLOS) is the most critical
one and is triggered when a failure occurs in the optical layer.
When a failure occurs at the optical layer, a SLOS alarm is gen-
erated. A router then waits for a small period of time, Ty,,, before
reporting this failure to the IS-IS layer. This is done to damp out
very short failures that disappear so as to avoid triggering route
re-computation at the IP level. Similarly, when an optical layer
faultis restored, a router receives a “SLOS cleared” signal. After
this, the router waits for a period of time, 1\, before reporting
this to the IS-IS protocol. This again is done to damp out “flaps”,
when an optical layer fault appears and disappears several times
and unnecessarily triggers route re-computation at the IP level.
Typical values of for T, and T}, are 20 ms and 10 s, respec-
tively; following the principle that bad news should travel fast
and good news should travel slow.

In view of this damping mechanism, the correlation of IS-IS
failures and SLOS alarms, for the same link, is done as follows.
If an IS-IS link is reported to be down at time ¢, then we search
for a SLOS alarm message at any time between ¢ — 20 ms and ¢
(we make slight adjustments to compensate for marginal errors

TABLE III
% OF IS—IS FAILURES MATCHED WITH SLOS ALARMS FOR FOUR MONTHS

| Failure Class [[ Jul ]| Aug | Sep [ Oct |

| All failures [ 53% ] 54% | 24% [ 35% |
Shared Optical-related 87% 70% | 60% | 69%
Shared Router-related 2% 40% | 34% | 27%
Individual Low-Failure Links 47% 52% | 30% | 49%
All Individual (High+Low Failure) 41% 52% | 20% | 41%

in timing). Similarly, when a IS-IS link is reported to be up, we
search for a “SLOS cleared” message at any time between ¢t — 10
and ¢ seconds.

Table III shows the percentage of IS-IS failures that were
matched with SLOS signals for the failure classes defined by our
classification methodology. Note that the percentages shown
in this table should be interpreted as qualitative rather than as
quantitative arguments, as the focus of this paper is on the ISIS
failures and not the SONET alarms. for various reasons: first
because of the ambiguities in inferring the cause, mentioned
below; second because there are various optical-layer logs in
addition to the SONET alarms; third, there are many SONET
alarms, in addition to the critical SLOS signals.

We can make the following observations from Table III. The
most important observation is that the large majority (up to 87%)
of the shared failures classified by our methodology as ’shared
optical-related’ matches the SLOS alarms, which is a confir-
mation of their cause. This percentage is clearly higher than in
any of the other classes. We believe that the small remaining
percentage that is not matched to SLOS, could be matched to
other SONET alarms or different optical-layer logs or could in-
dicate some false positives in the classification. However, even
this first step of matching ISIS failures to SLOS signals, suf-
ficiently confirmed the cause of the large majority of shared
optical-related failures. A second observation is that the shared
failures classified as shared router-related have the lowest per-
centage matching the SLOS signals, as expected. There is how-
ever a nonzero percentage of them matching SLOS, because the
optical layer could still affect two or more links of the same
router sharing some optical component. Finally, it is not pos-
sible to infer the causes of Individual Link failures based solely
on the ISIS data. They can be due to any of the possible rea-
sons, including router or optical-layer problems. Therefore it is
expected that some of the individual failures (up to 52%) match
the SLOS signals. The percentages are similar for low-failure
links and for the remaining high-failure links, which do not seem
to have unusually high correlation with SLOS alarms.

V. FAILURE ANALYSIS

We now consider each class of failures separately and we
study its characteristics that are useful for re-producing its be-
havior. First, we apply the classification methodology of the pre-
vious section and count how many failures fall in each class.
Table I'V shows the contribution of each class to the total number
of failures. However, for proprietary reasons, we cannot report
absolute numbers of failures, and we report normalized values
(typically percentages) instead. Throughout the section, we note
what it is a percentage of, as appropriate in different places.

Then, we study the properties of each one of the four classes
and in particular: 1) the time-between-failures; 2) the distri-
bution of failures across components (links or routers); 3) the
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TABLE IV
PARTITIONING FAILURES INTO CLASSES
Failure Class [[ % of all | % of unplanned |
Data Set 100%
Maintenance 20%
Unplanned 80% 100%
Shared Router-Related 16.5%
Shared Shared Optical-Related 11.4%
Unspecified 2.9%
Individual High Failure Links 38.5%
Low Failure Links 30.7%

TABLE V
STATISTICAL CHARACTERIZATION OF EACH FAILURE CLASS
Time Number of | Time-to- Number
between failures per repair of links
Failures component failing
Low-Failure Weibull Power-Law | Empirical N/A
Links (network-wide)
High-Failure Empirical Power-Law | Empirical N/A
Links (per-link)
Shared Weibull Power-Law | Empirical | Empirical
Router-Related (network-wide)
Shared Weibull N/A Empirical | Empirical
Optical-Related (network-wide)

time-to-repair, and (iv) the number of links that fail together in
a shared (router- or optical-related) event. Table V summarizes
these properties for each class. Rows correspond to classes and
columns correspond to properties. In the rest of this section, we
discuss each class separately: we provide empirical distributions
for the above three properties and, when possible, we also fit
them to well-known distributions. In each subsection, we focus
on one class and characterize how failures happen in time and
across components (routers, links, etc). Fig. 5 also provides the
empirical cumulative distribution function of time-to-repair for
all classes. Notice that the frequency of failure has a larger effect
on IP connectivity, because the network reacts and reconfigures
itself shortly after a failure occurs; e.g., frequent but short fail-
ures may be more disruptive than a single long failure.

A failure model is specified by this information (% of fail-
ures per class and statistics for each class) and allows the in-
terested reader to reproduce a realistic failure scenario. For ex-
ample, one can generate failures according to the statistics of
each class (how frequently a failure happens, on what router/link
it happens and how long it lasts) separately and then superim-
pose failures from different classes.

A. Weekly Maintenance Window

20% of all failures happen during the window of 9-h weekly
maintenance, although each such window accounts only for 5%
of a week. Fig. 6 shows the occurrence of link failures due to
scheduled maintenance. It turns out that those account for many
of the vertical lines in Fig. 1.

More than half of the failures during the maintenance
window are also router-related (according to the definition of
Section IV-C). This is expected as maintenance operations
involve shutting down and (re)starting routers and interfaces.
Also, Fig. 5 shows that the cumulative distribution function
(CDF) of time-to-repair for maintenance-related failures, is
close to the CDF for the router-related failures, which further
supports the observation that many of the maintenance failures
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are router-related. A typical maintenance window for a given
interface/router is one hour, although it can take less than that.

B. Router-Related Failures

Router-related events are responsible for 16.5% of the un-
planned failures. They happen on 21% of all routers. 87% of
these router events (or 93% of the involved failures) happen
on backbone routers and the remaining 7% happens on access
routers. An access router runs IS-IS only on two interfaces con-
necting to the backbone but not on the customer side.

Router events are unevenly distributed across routers. Let
n(r) be the number of events in router r and nn(r) = 100 -
n(r)/ maxn be its normalized value with respect to its max-
imum value maxn = max, (n(r)). Fig. 7 shows the normalized
number of events per router, for routers ranked in decreasing
number of events. The straight line in the log-log plot indicates
that nn(r) follows roughly a power-law. Both n(r) and nn(r)
follow a power-law with the same slope. An estimate of the
parameters of the power-law using least-square method yields
n(r) o< r=%8, which we plot as a dashed line in Fig. 7. The
mean time between events varies from five days up to several
months, for different routers.

When a router event happens, multiple links of the same
router fail together. The distribution of the number of links in
an event is shown in Fig. 8. Events involve 2-20 links. This
is related to the number of ports per linecard, which varies
typically between 2 and 24. Most events involve two links; 12%
of events are due to failures of the two links of access routers.
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The empirical CDF of time-to-repair for router-related fail-
ures is shown in Fig. 5, together with those of the other classes.
The CDF for the router and the maintenance-related classes are
close to each other, and shifted toward larger values compared
to other classes. This could be due to human intervention for re-
pair or due to the rebooting process that takes on the order of
several minutes for backbone routers. Repair times for failures
belonging to the same event are roughly equal.

Another characteristic of interest is the frequency of such
events. Because not all routers experience enough events for
a statistically significant derivation of per router inter-arrival
times, we consider the time between any two router events, any-
where in the network. Fig. 9 shows the empirical cumulative
distribution of network-wide time between two router events.
We observe that the empirical CDF is well approximated by the
CDF of a Weibull distribution: F(z) = 1—exp(—(z/a)?),z >
0. We estimate the Weibull parameters using maximum-likeli-
hood estimation as « = 0.068 and 3 = 0.299. The fitted CDF
is shown in dashed line in Fig. 9. In a separate figure, omitted
here for lack of space, we noticed that the autocorrelation func-
tion decreases fast beyond small values of the lag. This means
that, for practical purposes, one could use i.i.d Weibull random
variables to simulate the time between router events. The ap-
propriateness of the Weibull distribution for the time between
failures, is discussed in Section VII.
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Fig. 9. CDF for the network-wide time between router events.
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C. Shared Optical-Related Failures

Shared optical failures have an important impact on the net-
work operation, as they affect multiple links and are therefore
more difficult to recover from than individual link failures.
Shared optical-related failures are responsible for 11.4% of all
unplanned failures.

Fig. 10 shows the histogram of the number of IP links in the
same optical event. There are at least two (in order to overlap
by definition) and at most 10 links in the same event. This is in
agreement with sharing information derived from the IP-to-Op-
tical mapping. E.g., the most frequent number of links sharing a
segment according to the mapping is 2 (which is also the case in
optical events); the maximum number of links that share a seg-
ment according to the mapping is 25 (larger than the maximum
number of links in any optical event).

The CDF of the time-to-repair for optical-related failures is
shown in Fig. 5. Short time-to-repair is more likely due to faults
in the optical components, while longer values correspond to
fiber cuts or other failures that require human intervention to be
repaired. Similarly to the previous classes of shared failures, the
CDF s shifted towards larger values. By their definition, failures
in the same optical event happen within a few seconds from each
other.

Another characteristic of interest is the frequency of optical
failures in the network. Fig. 11 shows the CDF for the time be-
tween two successive optical events, anywhere in the network.
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The values range from 5.5 sec up to 7.5 days, with a mean of
12 hours. We use maximum likelihood estimation to estimate
the parameters of a Weibull distribution from the empirical data
and we obtain & = 0.013 and 3 = 0.445. The resulting CDF,
shown in dashed line in Fig. 11, is an approximation of the em-
pirical CDF. However, one can observe that there are more dis-
tinct modes in this distribution (e.g., one from 0 up to 100 sec, a
second from 100 sec up to 30 hours and a third one above that).
A closer look in the sequence of events reveals that times be-
tween events below 100 sec correspond to many closely spaced
events on the same set of links that could be due to a persistent
problem in the optical layer. However, the Weibull fit of the ag-
gregate CDF sufficiently characterizes the frequency of optical
events network-wide.

D. High Failure Links

High failure links include only 2.5% of all links. However,
they are responsible for more than half of the individual failures
and for 38.5% of all unplanned failures, which is the largest
contribution among all classes, see Table IV.

As we discussed earlier in Fig. 4, the number of failures n(l)
per high failure link / follows a power-law: n(l) oc [~%73, Each
high failure link experiences enough failures to allow for a char-
acterization by itself, as opposed to the previous classes that al-
lowed only for a network-wide characterization.

The empirical CDF of the time between failures on each of
the high failure links is shown in Fig. 12. There is a large het-
erogeneity among the behavior of the high-failure links. Some
of them experience failures well spread across the entire period.
They correspond to the long horizontal lines in Fig. 1 and the
smooth CDFs in Fig. 12. Some other high failure links are more
bursty: a large number of failures happens over a short time pe-
riod. These correspond to the short horizontal lines in Fig. 1
and to the CDFs with a knee in Fig. 12. The mean time between
failures varies from 1 to 40 hours for various links, i.e., a shorter
range than for the other classes.

Finally, the CDF of the time-to-repair for failures on high
failure links is shown in Fig. 5. It is clearly distinct from all other
classes- failures last significantly shorter (up to 30% difference
from the CDF of all unplanned failures and up to 70% from the
CDF of the shared failures). The larger number of shorter fail-
ures maybe due to the high failure links being in an advanced
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stage of their life and their components being subject to inter-
mittent and recurring faults.

E. Low Failure Links

In Fig. 4, we have already defined low failure links are
those with less individual failures than the threshold THR.
The number of failures n(l) per link (1) follows roughly a
power-law: n(l) oc (7135,

A statistically significant characterization is not possible
for every low failure link, as many of them do not experience
enough failures. We group all low failure links together and
study the time between any two failures, i.e., the two failures
may happen anywhere in the network and not necessarily
on the same link. Fig. 13 shows the empirical CDF for the
network-wide time between failures. It turns out that in this
case too, the empirical CDF is well approximated by a Weibull
distribution with maximum-likelihood estimated parameters
a = 0.046 and 8 = 0.414; the fitted distribution is shown
in dashed line in the same figure. We also looked at the auto-
correlation function for the time between failures at the 90%
confidence interval, omitted here for lack of space. We notice
that correlation in the time between failures drops fast after
a small lag. Therefore, as a first approximation, we can use
independent and identically distributed (i.i.d.) Weibull r.v.
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with the fitted parameters to regenerate the network-wide time
between individual failures on low-failure links.

Finally, the empirical CDF for the time-to-repair in this class
is shown in Fig. 5, together with the rest of the classes. It is
interesting to note that the CDF is very close to the CDF for
all unplanned failures. This fact together with the observation
that low failure links correspond to the roughly random part of
Fig. 1 indicate that, unlike the previous classes, failures in this
class have an “average” behavior and are the norm rather than
the exception of the entire data set.

VI. FAILURE ANALYSIS OVER SHORTER TIME PERIODS

The classification and characterization, so far, was based on
the entire measurements period. It is also important to under-
stand how properties remain constant or change with time. For
this purpose, we now consider shorter, in particular one-month3,
time periods and we investigate to what extent the failure char-
acteristics identified, based on the entire measurement period,
still hold or change with time. For every one-month period, we
now apply the same classification and characterization as we
did for the entire time period. As far as the classification is
concerned, we show how the total number of failures and their
breakdown to the four failure classes (router-related, optical-re-
lated, high-failure links, low-failure links) varies with time; we
find that most of the variability is due to the high-failure links.
As far as the statistical characterization is concerned, we find
that the same type of distributions (Weibull for the time-be-
tween-failures, power-laws for the heterogeneity of failures per
network element, as well as the empirical distributions for the
failure durations) still apply for each month. Furthermore, in the
case of the low-failure links class, these distributions are esti-
mated to have roughly the same parameters.

A. Number of Failures and Classification

First, we break the entire period into seven months and look
at the number of failures (reported as the% of the total number
of failures in the entire measurement period) and their causes
for each month separately, see Fig. 14. The top bold line shows
the number of failures in each month, including all causes. The
four bottom thin lines show the number of failures per month
for each class of failures.

We can make the following observations from this figure.
First, the number of failures in the class of low-failure links does
not vary much across months. Second, the number of failures in
the high-failure links varies significantly from month to month.
For example, in July and August there are no such failures, while
in June and September they are the majority of failures. This
is expected, as this class of failures corresponds to exception-
ally rare events. Third, the shared link failures (router-related
and optical-related) have consistently a smaller and less vari-
able contribution. Finally, the top line is the sum of the four
bottom lines and corresponds to all failures per month, including

3As a first cut, we chose periods one-month long, because they are signifi-
cantly shorter than the entire seven-month period to reveal time variability but
they are still long enough for a sufficient number of failures to occur and allow
for a statistical characterization. In general, the entire measurement period might
need to be partitioned into time intervals of variable length, in order to better
capture bursty behavior. This is a more general and difficult problem and is not
addressed here.
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Fig. 14. Number of failures per month, per class and aggregate, (reported as the
percentage of the total number of failures in the entire measurement period).

all causes. Its variability is mainly due to the month-to-month
variability of high-failure links.

B. Statistical Characterization

We now look at the statistical characteristics of three classes:
low-failure links, high-failure links, and router-related. We ex-
clude the high-failure links, because both the small number of
high failures per month and the variability from month-to-month
do not allow for a sufficient statistical characterization. For
the remaining classes, we find that the distributions describing
their characteristics (time-between-failures, heterogeneity of
network elements, time-to-repair) also hold for each month,
with some small variation in the parameters.

Let us first consider the low-failure links class. Fig. 15 shows
the empirical distributions for each month separately (a thin
line for each month) and for the entire measurement period
(shown in a bold line). Fig. 15(a) shows the empirical distri-
butions for the time-between-failures. We can observe visually
that the curves for each month have the same shape and are close
to the curve for the entire period. A Weibull distribution can be
fitted to each one of them, using maximum likelihood estima-
tion; the estimated parameters with 95% confidence interval are
shown in Table VI. These parameters are close to each other and
to those estimated for the entire measurement period. Fig. 15(b)
shows the number of failures in each link (with at least one
failure in a month) in decreasing number of failures, for each
month separately. We see that the curve for each month can be
approximated by a straight line with roughly the same slope as
the slope for the entire period. Finally, Fig. 15(c) shows the em-
pirical CDF for the time-to-repair a failure for each month. All
CDFs (with the exception of August which seems to be an out-
lier) have the same shape and are close to the empirical CDF for
the entire period.

Applying the same steps to the router-related and optical-re-
lated classes, we observe that the same distributions also
apply in the per-month analysis. First, Weibull distributions
describe well both the time-between-router-related and the
time-between-optical-related events (network-wide) for each
month. Second, power-laws describe well the router events per
router, for each month. Finally, the empirical distributions of
time-to-repair for each month have the usual consistent shape.
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However, and contrary to the low-failure class, the estimated
parameters vary significantly from month-to-month. This can
be explained by the small number of failures per month in the
router- and optical-related failure classes.

VII. DISCUSSION

This work offers a detailed characterization of link failures
and reveals the nature and extent of failures in today’s IP back-
bones. Our methodology can be used to identify failing network
components and pinpoint areas for improvement. Furthermore,
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TABLE VI
TIME-BETWEEN-FAILURES ON LOW FAILURE LINKS AND OVER
ONE-MONTH PERIODS. WEIBULL PARAMETERS ESTIMATED
WITH 95% CONFIDENCE INTERVAL

[Month | Apr [ May [ Jun [ Jul [ Aug [ Sep [ Oct |
« 0.044 | 0.056 | 0.026 | 0.056 | 0.063 | 0.046 | 0.043
6] 0.450 | 0.421 | 0.490 | 0403 | 0.388 | 0.423 | 0.438

it provides a failure model, in terms of the statistical properties
of each class. Such a model would be useful as an input to var-
ious engineering problems that need to account for failures.

IP link failures occur due to several causally unrelated events
at or below the IP layer. Accordingly, we have divided failures
into a number of classes such that their underlying causes are
unrelated. For each class, we have identified a few key proper-
ties (such as the time between failures, the time-to-repair and
the distribution of failures across links and routers), provided
their statistics and, when possible, fitted them using well-known
distributions with a small number of parameters. Our backbone
failure model consists of the superposition of the models for
each class. Let us first discuss the validity of our classification
and then the modeling of each class separately.

Our classification is based on hints from the IS—IS data set,
discussed in detail in Section IV. In the same section, we used
the IP-to-Optical database and confirmed to a satisfactory de-
gree the validity of our optical-related class of failures. The fact
that all simultaneous failures involved a common router was also
a confirmation for the router-related class. When we applied our
classification methodology to the measurements, the statistics
of the identified classes turned out to be quite different from
each other, which provides further assurance about our classi-
fication. For example, the CDF of time-to-repair in Fig. 5 are
well separated from each other: the shared failures “pull” the
CDF toward larger values, the high failure links “pull” it toward
smaller values, while the low failure links are in the middle.
A similar separation happens in the initial Fig. 1: the mainte-
nance and shared failures capture the vertical lines, the high
failure capture the horizontal lines, the low failure links cap-
ture the remaining “random” plot. However, inferring the fail-
ures causes based solely on IS-IS logs is a difficult reverse en-
gineering problem and results to a coarse classification I.

The characterization in Section V provides the basis for mod-
eling each class separately. There are two interesting obser-
vations from parameterizing the properties of various classes.
First, we observe that the empirical CDF for the network-wide
time between failures (or events) for three classes of failures
was well approximated by a Weibull distribution. These three
classes are the shared router-related (Fig. 9, with parameters
a = 0.068, 8 = 0.299), the shared optical-related (Fig. 11, with
parameters « = 0.013, 3 = 0.445) and the low- failure links
(Fig. 13, with parameters o = 0.046, 8 = 0.414). The Weibull
distribution has been found widely applicable in reliability en-
gineering to describe the lifetime of components, primarily due
to its versatile shape [27]. In addition, the Weibull distribution
is derived as an extreme value distribution: for a large number
of identical and independent components, the time to the first
failure follows a Weibull, e.g., see [27]. This provides a theo-
retical justification for the good fit in our case: there is a large
number of components in each class and the network-wide time
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between failures can be interpreted as the time to the first failure,
assuming a renewal process.

Our second finding is that power-laws describe well the dis-
tribution of failures (or events) across components in the same
class. Indeed, power-laws fitted well the number of router events
per router (see Fig. 7, with slope —0.8) as well as for the number
of individual failures per high or low failure link (see Fig. 4,
with slope —1.35). Power-laws are often found to describe phe-
nomena in which, small occurrences are extremely common,
whereas large instances are extremely rare. Examples include
man-made or naturally occurring phenomena, such as word fre-
quencies, income distribution, city sizes, and earthquake magni-
tudes [28]. The Internet has also been found to display a number
of power-law distributions [29], [30].

As an example of using the failure model, consider the class
of low-failure links in Section V-E and let us try to regenerate
failures with similar statistics as the measured ones. To decide
when the next failure happens, one can pick a random number
from the Weibull distribution for the network-wide time be-
tween failures. To decide on which link this failure happens,
one could pick a link using the power-law distribution. We can
use the power-law to assign a failure to a link as follows. If we
observe a link [ over a long period of time (I' = 7 months)
and find that it suffers n; failures, the failure probability p;
is proportional to n; /7. If the links are independent and n,
na,...nr are given (here follow the power-law), so do pi,
P2, - .. pr. Given that a failure happens, it happens on link / with
probability p1/(p1 + - -+ pr) = n1/(n1 + --- + nr) which
can now be easily calculated. Similar steps can be followed
to reproduce the router events using the network-wide time
between events and the distribution of events across routers.

Different networks may vary in their topology, design, main-
tenance, technology, age and other specific traits. However, our
two main contributions of this paper, namely the classification
methodology and the resulting failure model, are useful in a gen-
eral context. First, our classification methodology can be ap-
plied to any network using only IP-level failure logs. Indeed,
the paper describes the data set that would be needed (just IS-IS
logs) and the heuristics to derive a failure model from any net-
work that is using OSPF or IS-IS. Operators could use our
method to derive a failure model from their own network (i.e., to
classify failures at the IP layer and estimate the distribution pa-
rameters for each class). Second, we applied our methodology
to the Sprint’s backbone network and estimated the parameters
of the distributions based on the failures measured on this net-
work. Our analysis provides a realistic data point that can be
used as input to simulation/analytical studies, e.g., to evaluate a
new protocol/architecture targeting the IP core.

VIII. CONCLUSION

A variety of failures or at below the IP layer, can potentially
result in loss of IP connectivity. In this paper, we analyze seven
months of IS-IS routing updates from the Sprint’s IP backbone
to characterize link failures. We classify failures according to
their characteristics and we infer their probable causes. Our find-
ings indicate that failures are part of the everyday operation:
20% of them are happen during a period of scheduled mainte-
nance, while 16% and 11% of the unplanned failures are shared
among multiple links and can be attributed to router-related

and optical-related problems respectively. Our study provides
a better understanding of the nature and the extent of link fail-
ures, and a statistical failure model that can be used as input to
many network design and traffic engineering problems.
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