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Abstract

Network tomography aims at inferring internal network cweristics based on measurements at the edge of the
network. In loss tomography, in particular, the charastariof interest is the loss rate of individual links. Theseai
significant body of work dedicated to this problem using meakt and/or unicast end-to-end probes. Independently,
recent advances in network coding have shown that thereessrad advantages from allowing intermediate nodes
to process and combine, in addition to just forward, pacKetshis paper, we pose the problem of loss tomography
in networks that have network coding capabilities. We desigframework for estimating link loss rates, which
leverages network coding capabilities and we show that firaves several aspects of tomography, including the
identifiability of links, the tradeoff between estimationcaracy and bandwidth efficiency, and the complexity of
probe path selection. We discuss the cases of inferringlo$e rate of a single link; the loss rates of links on a
tree topology; or on a general topology. In the latter calse,ltenefits of our approach are even more pronounced
compared to standard techniques but we also face novekolga, such as dealing with cycles and multiple paths
between sources and receivers. Overall, this work was thetéirmake the connection between tomography and
network coding and thus opened a new research direction.

Index Terms

Network Coding, Network Tomography, Link Loss Inference.

I. INTRODUCTION

Distributed Internet applications often need to know infation about the characteristics of the network. For
example, an overlay or peer-to-peer network may want toctleted recover from failures or degraded performance
of the underlying Internet infrastructure. A company wittlveral geographically distributed campuses may want to
know the behavior of one or several Internet service pragi@éSPs) connecting the campuses, in order to optimize
traffic engineering decisions and achieve the best endidoperformance. To achieve this high-level goal, it is
necessary for the nodes participating in the applicatiomvarlay to monitor Internet paths, assess and predict
their behavior, and eventually make efficient use of them dkingy appropriate control and traffic engineering

decisions both at the network and at the application layEnsrefore, accurate monitoring at minimum overhead
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and complexity is of crucial importance in order to provide tinput needed to take such informed decisions.
However, there is currently no incentive for ISPs to proviidailed information about their internal operation
and performance or to collaborate with other ISPs for thigppse. As a result, distributed applications usually
rely on their own end-to-end measurements between nodgshtéhe control over, in order to infer performance
characteristics of the network.

Over the past decade, a significant research effort has meted to a class of monitoring problems that aim at
inferring internal network characteristics using meamests at the edge [1]. This class of problems is commonly
referred to agomographydue to its analogy to medical tomography. In this work, we @aeticularly interested
in loss tomographyi,e., at inferring the loss probabilities (or loss rates) of indual links using active end-to-end
measurements [2]-[6]. The topology is assumed known andesegs of probes are sent and collected between a
set of sources and a set of receivers at the network edge-léwek parameters, in this case loss rates of links, are
then inferred by the observations at the receivers. The \iaitiol efficiency of these methods can be measured by
the number of probes needed to estimate the loss rates ofshteithin a desired accuracy. Despite its significance
and the research effort invested, loss tomography remainar@ problem for a number of reasons, including
complexity (of optimal probe routing and of estimation)nbavidth overhead, and identifiability (the fundamental
fact that tomography is an inverse problem and we cannotttiirebserve the parameters of interest). Furthermore,
there are some practical limitations such as the lack of emdjpn of ISPs, the need for synchronization of sources
in some schemes, etc.

Recently, a new paradigm to routing information has emerxgig the advent of network coding [7]-[9]. The
main idea in network coding is that, if we allow intermediatetworks to not only forward but also combine
packets, we can obtain significant benefits in terms of thmpugy delay and robustness of distributed algorithms.
Our work is based on the observation that, in networks eeappith network coding capabilities, we can leverage
these capabilities to significantly improve several aspettioss tomography. For example, with network coding,
we can combine probes from different paths into one, thusaied the bandwidth needed to cover a general graph
and also increasing the information per packet. Furtheentbe problem of optimal probe routing, which is known
to be NP-hard, can be solved with linear complexity when oetveoding is used.

This paper proposes a framework for loss tomography (inetuchechanisms for probe routing, probe and code
design, estimation, and identifiability guarantees) inmoeks that already have network coding capabilities. Such
capabilities do not exist yet on the Internet today, but asElable in wireless mesh networks, peer-to-peer and
overlay networks and we expect them to appear in more envienits as network coding becomes more widely
adopted. We show that, in those settings, our network cedasgd approach improves the following aspects of the
loss tomography problem: how many links of the network we icd@r (identifiability); the tradeoff between how
well we can infer link loss rates (estimation accuracy) aod Imany probes we need in order to do so (bandwidth
efficiency); how to select sources and receivers and how uterprobes between them (optimal probe routing).
Overall, this is a novel application of network coding teicjues to a practical networking problem, and it opens

a promising research direction.
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The structure of the paper is as follows. Section Il discsigstated work. Section 1l states the problem and
summarizes the challenges and main results. Sections IVidWéapresent in detail the framework and mechanisms

in the cases of a single link, trees and general topologésmectively. Section VII concludes the paper.

Il. RELATED WORK

Network Tomography. The term network tomography typically refers to a family oblplems that aim at inferring
internal network characteristics from measurements adge of the network. Internal characteristics of interessg m
include link-level parameters (such as loss and delay otar the network topology. Another type of tomography
problems aims at inferring path-level traffic intensityg(etraffic matrices) from link level measurements [10]. Our
paper focuses on inferring the loss rates of internal linkisgiactive end-to-end measurements and assuming that
the topology is known. Therefore it is related to the litaraton loss tomography, part of which is discussed below.

Caceres et al. considered a single multicast tree with a kriopology and inferred the link loss rates from the
receivers’ observations [2]. In particular, they develb@elow-complexity algorithm to compute the maximum-
likelihood estimator, by taking into account the dependksintroduced by the tree hierarchy to factorize the
likelihood function and eventually compute the MLE in a restve way. Throughout this paper, we refer to the MLE
estimator for a multicast tree, developed in [2], as MING] are build on it. Bu et al. used multiple multicast trees
to cover a general topology and proposed an EM algorithmiféirlbss rate estimation [3]. Follow-up approaches
have been developed for unicast probes [5], [6], joint iefiee of topology and loss rates [4], adaptive tomography
and delay inference [11]. The above list of references iscnatprehensive. Good surveys of network tomography
can be found in [1], [12].

Active vs. Passive TomographyTomography can be based either on active (generating pralffee) or on
passive (monitoring traffic flows and sampling existing fidfmeasurements. Passive approaches have been most
commonly used for estimating path level information, intjgattar, origin-destination traffic matrices, from data
collected at various nodes of the network [10]. This appho@ad problem statement are well-suited for the needs
of a network provider. For the problem of inferring link losges, active probes are typically used and information
about individual packets received or lost is analyzed atetthge of the network. This approach is better suited for
end-users that do not have access to the network. Howeeee #re also papers that study link loss inference by
using existing traffic flows to sample the state of the netwa@®, [14]. Once measurements have been collected
following either of the two methods, statistical infererieehniques are applied to determine network charactsisti
that are not directly observed.

The passive approach has the advantage that it does notenggiustional burden on the network and that it
measures the actual loss experienced by real traffic. Howigvaust also ensure that the characteristics of the
traffic (e.g.,TCP) does not bias the sample. In the active approach, onebiescontrol over designing the probes,
which can thus be optimized for efficient estimation. The dside is that we inject measurement traffic that may
increase the load of the network, may be treated differaghtiy regular traffic, or may even be dropped.,due

to security concerns.
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Network Coding and Inference. An extensive body of work on network coding [9], [15] has egeat after
the seminal work of Ahlswede et al. [7] and Li et al. [8]. Theim&ea in network coding is that, if we allow
intermediate networks to not only forward but also combiaelgts, we can realize significant benefits in terms
of throughput, delay, and robustness of distributed allgors. Within this large body of work, closer to ours are a
few papers that leverage the headers of network coded aftkepassive inference of properties of a network. In
[16], Ho et al. showed how information contained in netwoddes can be used for passive inference of possible
locations of link failures or losses. In [17], Sharma et ainsidered random intra-session network coding and
showed that nodes can passively infer their upstream nkttepology, based on the headers of the received coded
packets they observe (which play essentially the role obgsd. The main idea is that the transfer matiig.(
the linear transform from the sender to the receiver) isirdistfor different networks, with high probability. All
possible transfer matrices are enumerated, and matchée tbserved input/output, and a large finite field is used
to ensure that all topologies remain distinguishable. Aterded version of this work to erroneous networks is
provided by Yao et al. in [18], where different (ergodic ovatsarial) failures lead to different transfer functions.
The approach in [17], [18] has the advantage of keeping thasorement bandwidth low (not higher than the
transmission of coefficients, which is anyway required fatadtransfer with network coding) and the disadvantage
of high complexity. In [19], Jafarisiavoshani et al. coreield peer-to-peer systems and used subspace nesting
structures to passively identify local bottlenecks. Samyl to these papers, we leverage network coding operations
for inference; in contrast to these papers, which use thddisaf network-coded packets for passive inference of
topology, we use the contents of active probes for infereidank loss rates.

Our Work. We were the first to make the connection between tomograptiynatwork coding capabilities. In
[20], we introduced the basic idea of leveraging networkiegdapabilities to improve network monitoring. In
[21], we studied link loss estimation in tree topologies[28], we extended the approach to general graphs. This
paper integrates ideas from these preliminary confereapens into a common framework, and extends them by
a more in-depth analysis of identifiability, routing, esdition and code design.

Our approach is active in that probes are sent/received/foothe edge of the network and observations at
the receivers are used for statistical inference. Interatechodes forward packets using unicast, multicast and
simple coding operations. However, the operations at tterrimediate nodes need to be set-up once, fixed for all
experiments and be known for inference. Therefore, our aggr requires more support from the network than
traditional tomography, for the benefit of more accurafmieht estimation. Our methods may also be applicable to
passive tomography, where instead of sending specialimgiep, one can view the coding coefficients on a network
coded packet as the “probe”, thus overloading them with leotihmunication and tomographic goals, as it is the
case in [17], [18]. In this paper, we focus exclusively on theographic goals by taking an active approdah,

by sending, collecting and analyzing specialized probeddmography.
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Ill. PROBLEM STATEMENT
A. Model and Definitions

1) Network and Monitoring Schemé&\Ve consider a network represented as a g@dph (V, E) whereV is the
set of nodes and is the set of edges correspondinglégical links'. We use the notation = AB for the link e
connecting vertex4 to vertex B. We assume thatr is (i) a directed graph (ii) without self-loops (iii) symnniet
(i.,e.if AB € E thenBA € FE) but (iv) in general, with different loss rates in the twoetitions of a link (as it is
the case on the Internet,g.due to different congestion levels). The topolagy= (V, E) is assumed to be known.

We assume that packet loss on a link E' is i.i.d Bernoulli with probability0 < «, < 1. Losses are assumed
independent across links. Laet= {a.},e € E be the vector of the link loss probabilit@s In loss tomography,
we are interested in estimating all or a subset of the paem@ta.

A setS of S = |S| source nodes in the periphery of the network can inject ppdizkets, while a seR of
R = |R] receivers can collect such packets. Several problem i@r&tn the choice of sources and receivers are
possible, and we will discuss the following in this paperilfie set of sources and the set of receivers are given and
fixed; (ii) a set of nodes that can act as either sources oiversds given (and we can select among them); (ii) we
are allowed to select any node to act as a source or a recalgassume that intermediate nodes are equipped with
unicast, multicast and network coding capabilities. Prnodekets are routed and coded inside the network following
specific paths and according to specified coding operatiims.routes selected and the operations the intermediate
nodes perform are part of the design of the tomography schéreg are chosen once at set-up time and are kept
the same throughout all experiments; all the operationsitefiediate nodes are known during estimation.

In general, a probe packet is a vectormefsymbols, with each symbol being in a finite fiel). This includes as
special cases: scalar network coding (fer= 1), operations over binary vectors (for= 2), and more generally,
vector network coding (forn > 1)%. In oneexperimentwe send probes from all sources and we collect probes at
the receivers: each souré¢e S injects one probe packet; in the network, and each receivgre R receives one
probey;. The observations at all receiveRsis a vectory = (Y7,Y3,...YR) in the spacé) = FqR. For a given set of
link loss probabilitiesy = {a.}, e € E, let the probability of observatiop € Q be p(y|a) = P, ((Y1,...Yr) = y).

We will refer to the probability distribution of all obserians asP,.

1A logical link results from combining several consecutieygical links into a single link. This results in a a graftwhere every intermediate
vertex has degree at least three. This is a standard assamptithe tomography literature, which is imposed for idiamility purposes, as
discussed after Definition 2.

2Throughout the paper, the notatienrefers to the vector of all loss probabilities, and refers to the loss prob. of an individual edge

3This is clearly equivalent to inferring the success prolit@s 1 — {a.}, as it is the case in many tomography papers.

4What is important is that a probe can take oney®f possible values. We note, however, that there is an equsel®éetween operations
with elements in a finite field and operations with vectors mfrapriate lengthE.g.,in [23], the multicast scenario was considered, and scalar
network coding over a finite field of siz2™ was used equivalently to vector network coding over the epcbinary vectors of lengthn.
Thinking in terms of one of the aforementioned special césesppropriate in special topologies, as we will geg,in tree and reverse tree
topologies, where scalars and binary vectors are usecgatsgy.
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To estimate the loss rates of links, we perform a sequencg ofdependent experiments. Let the observations
(at all receivers) collected afteW experiments béy(1);y(2);...;y(NV)). Let n(y) be the number of times that
observationy € Q2 occurred, Wher{:yeQ n(y) = N. The probability that a given set of observations has oecurr
is:

p(y(1),5(2),...y(N)|a) = [ p(y]e)"™ €Y
yeQ

It is convenient to work with the log-likelihood function,hich calculates the logarithm of this probability:

L(a) =Y n(y)log(y|a) )

yeN

The goal is to use the observations at the receivers, thelkdge of the network topology, and the knowledge of
routing/coding scheme to estimate the loss rates of intdimia of interest. We may be interested in estimating
the loss rate on a single link, on a subset of links or on akdin

We make two assumptions, which are both realistic in pradiied standard in the tomography literature:

« The probability of lossy; on a linki is not 1,i.e., a; € [0,1). This ensures that the log-likelihood function
is well-defined and differentiable.
« We perform sufficient measurements so that, each obsemat®d 2 at the receivers occurs at least onice,,

ny > 0. This ensures that no term in the log-likelihood functiodraes a constant (due to a zero exponent).

Definition 1: A monitoring scheméor a given graph refers to a set ob source nodes, a set & receivers,

a set of paths that connect the sources to the receivers,rtioe packets that sources send, and the operations
intermediate nodes perform on these packets.

We use the notion of link identifiability as it was defined i [Zheorem 3, Condition (i)):

Definition 2: A link e is calledidentifiableunder a given monitoring scheme iff; o € [0, 1)|E| and P, = P,
impliesa = o'.

To illustrate the concept, consider two consecutive links= AB andes = BC' in a row, where node3 has
degree 2, and is neither a source nor a receiver. These lnekadat identifiable, as (3) would only allow us to
identify the value of the produet,, o, and thus would lead to an infinite number of solutions. Thibésause,
it is not possible to distinguish whether a packet gets dedppn linke; or e;. Note, however, that the case of
having two links in a row is ruled out by our assumption of wiagkon a graph with logical links (all vertices
in a the graph have degree three or greater). Another case;tha are not identifiable, and which is possible to
happen even on a graph with logical links, is when the twodiake crossed by exactly the same set of paths.

Identifiability is not only a property of the network topolgdout also depends on the monitoring scheme. One
of the main goals of the monitoring scheme design is to maantiie number of identifiable links. However, our
definition of identifiability does not depend on the estimamployed. Essentially, identifiability depends on the

probability distributionP, and on whether this uniquely determines
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2) Estimation: The maximum likelihood estimator (MLE) identifies the pasersa = {«.} that maximize the
probability of the observation:

& = argmax, log p(y|a). 3)
However, the MLE becomes computationally hard, speciallylérge networks. This creates the need for faster
algorithms that provide good approximate performance acfice.
To measure the per link estimation accuracy we will use thamsguared error (MSE): MSE E(|a. — Ge|?).
In order to measure the estimation performance all links £/, we need a metric that summarizes all links. We
use an entropy measureNT that captures the residual uncertainty. Since we expecstaked estimation errors
to be asymptotically Gaussian (similar to the case in [2p,define the quality of the estimation across all links as

ENT = "log (Elde — a.]?) (4)
eel

which is a shifted version of the entropy of independent Giamsrandom variables with the given variances [24].
If the entire error covariance matriR is available, then we can compute the metricFa8T = log detR, which
captures also the correlations among the errors on difféirdts. The metricE NT defined above captures only
the diagonal elements @&, i.e., the M SFE for each link independently of the others.

In some cases, we will approximate the error covarianceixnRtrusing the Fisher information matrik Under
mild regularity conditions (see for example Chapter 7 in][2%he scaled asymptotic covariance matrix of the
optimal estimator is lower-bounded by the Cramer-Rao bdumd The Fisher information matrif is a square

matrix with elementl, , defined as

() = B | 2 logp({¥,}: o)) 2 logp({¥:: o) ©

Oay Qg
where oy, o, are the loss probabilities of two links. In particular, undiee regularity conditions, the MLE is

asymptotically efficientj.e., it asymptotically, in sample size achieves this lower bound

B. Subproblems

Given a certain network topology, a monitoring scheme fasltomography can be designed by solving the

following subproblems in a sequential way.

1) Identifiability: For each linke € E, derive conditions that the scheme should satisfy so thatetige is
identifiable. Whether the goal is to maximize the number ehiifiable edges, or measure the link loss rate
on a particular set of edges, the identifiability conditiovi$ guide the routing and code design choices.

2) Routing: Select the sources and receivers of probe packets, thethatlugh which probes are routed and the
nodes where they will be linearly combingd.he design goals include minimizing the utilized bandwjdth

and improving the estimation accuracy, while respectirgrgquired identifiability conditions.

5Depending on the practical constraints, such flexibilityyroa may not be available. If one cannot choose the sour@escnodes and/or
routing, as it is the case in most of the tomography litegttinen this step can be skipped. If one can choose some @f faeameters, then
this can lead to further optimization of identifiability aedtimation accuracy.

May 24, 2010 DRAFT



3)

4)

Probe and Code DesignSelect the contents of the probes sent by the sources angdhations performed
at intermediate nodes. The goal is to use the simplest dapesaand the smallest finite field, while ensuring
that the identifiability conditions are met.

Estimation Algorithm : This is the algorithm that processes the collected probdeeaeceivers and estimates
the link loss rates. The objective is low complexity with goestimation performance. There is clearly a

tradeoff between the estimation error and the measurenagmaividth.

We note that these steps amet independent from each other. In fact, the design of routprgbe and code

design needs to be done with identifiability and estimatiomind.

C. Main Results

In this paper, we propose a monitoring scheme for loss toapigrin networks that have multicast and network

coding capabilities. In Sections V and VI, we present ourigieor the case of trees angkneraltopologies,

respectively. We evaluate all our schemes through exterssiaulation results. Below we preview the main results,

in each subproblem.

1)

2)

3)

4)

Identifiability: (1) We provide simple necessary and sufficient conditiomdifé identifiability. (2) We also
prove a structural property, which we ca#lversibility. if a link is identifiable under a given monitoring
scheme, it remains identifiable if we reverse the directipnaf all paths and exchange the role of sources
and receivers (which we call thetual configuratioi.

Routing: (1) For a given set of sources and receivers over an arbitogglogy, the problem of selecting a
routing that meets the identifiability conditions while nmnzing the employed bandwidth is NP-hard. We
show that, when network coding is used, this problem can besdan polynomial time. (2) Moreover,
we demonstrate that the choice of sources and receiverstaffiee estimation accuracy. (3) Finally, we
present heuristic orientation algorithms for general gsaplesigned to achieve identifiability, small number
of receivers and high estimation accuracy.

Probe and Code Design:i(1) In trees, we show that binary vectors sent by the sourndsdaterministic
code design withkor operations at intermediate nodes are sufficient. (2) In iggémgaphs, we need to use
operations over higher finite fields. We provide bounds orrélogiired alphabet size, we propose and evaluate
deterministic code design.

Loss Estimation: (1) For the purpose of estimating a single link, we designve-domplexity method for
computing the MLE; this is a powerful building block because practice, one is interested in estimating
the loss rate on one or a few congested links. (2) The revktsiproperty allows us to relate not only the
identifiability, but also the MLE function of a configuratiamd its dual; a direct application is that we can use
the low-complexity MLE estimator, developed in MINC [2],espfically for a multicast tree, in the case of
reverse multicast treei.€., topologies with several sources and one receiver) as v@lEd@r simultaneously

identifying the loss rates of several links (on topologi@seo than multicast or reverse trees), ML estimation
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is computationally intensive; we propose a number of héarégorithms, including belief propagation and
subtree decomposition algorithms, and we evaluate thefofeance through simulation.

The use of network coding at intermediate nodes, in additonnicast and multicast, has the potential to offer

several benefits for loss tomography:

« increased number of identifiable linkse(, whose loss probability can be inferred from end-to-end miess
ments);

« improved tradeoff between number of probes and estimatomuracy. (The intuition behind this benefit is
two-fold: (a) when paths of probes overlap, the probes adeddogether thus leading to exactly one probe
crossing each link; and (b) each network coded probe bring® rimformation, as it observes more than one
paths).

« the complexity of selecting probe paths for minimum cost itwsing of a general graph; reduces from NP-hard
to linear;

« the approach gracefully generalizes from trees to genemldgies €.9., having the same identifiability
conditions, using the same estimation algorithm, and é@wgithe use of overlapping trees or paths) where its

advantages are amplified.

IV. INFERRINGONE LINK

In this section, we discuss how to infer the loss rate of alsifigk. In particular, we present (i) a motivating
example to clarify the concepts, (ii) conditions for idéiathility ,and (iii) an efficient way to compute the maximum
likelihood estimator. The discussion of a single link is onfant for two reasons. First, we expect the most common
use of our framework, in practice, to be the identificatiorthe loss rate on a single or a few congested links in
the networR. In the latter case, the congested links can be identifieéguence one-by-one. Second, the intuition

gained here guides the design of schemes for the joint inéeref all links in later sections.

A. Motivating Example

Example 1:Consider the five-link topology depicted in Fig. 1. Nodésand B send probes and nodés and
F receive them. Every link can drop a packet according to ad. iBernoulli distribution, with probability,
independently of other links. We are interested in estingathese loss probabilities in all links, namely ¢, apc,
acp, apg, andapr.

The traditional multicast-based tomography approach dvaugle two multicast trees rooted at nodésand B
and ending a® and F'. This approach is depicted in Fig. 1-(a) and (b). At each erpnt, sourced sends packet
x1 and sourceB sends packets. The receiverdy and F' infer the link loss rates by keeping track of how many

times they receive packets andx,. Note that, due to the overlap of the two trees, for each éxyat, linksCD,

5This is a well-known fact in the tomography literature. libfsen exploited to set the loss rates of uncongested link®to and thus reduce
the number of unknowns and improve the identifiability.
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Fig. 1. Link loss monitoring for the basic 5-link topology.obles A and B are sourcesF and F' are receivers. Using multicast-based
tomography, the topology can be covered using two multitess 1 and 2. Alternatively, the topology can be coveredgusboded packets, if

nodeC' can add xor) incoming packets.

DE, and DF are used twice, leading to inefficient bandwidth usage. Mege from this set of experiments, we
cannot calculatevcp, and thus edg€'D is not identifiable. Indeed, by observing the outcomes okerpents on
each multicast tree, we cannot distinguish whether packét dropped on edgdC' or C'D; similarly, we cannot
distinguish whether packet, is dropped on edg&C or C'D. (Note that if we restricted ourselves to unicast only,
four unicast probes froml, B to E, F would be needed to cover all five links. Not only would the peots of
identifiability and overlap of probe paths still be preseat they would be further amplified.)

If network coding capabilities are available, they can halpviate these problems. Assume that the intermediate
nodeC can combine incoming packets before forwarding them to amatglinks. A sends toC' a probe packet
with payload that contains the binary string = [1 0]. Similarly, nodeB sends probe packet = [0 1] to node
C. If node C receives onlyz, or only z2, then it just forwards the received packet to nddeif C receives both
packetsz; and s, then it creates a new packet, with payload their linear doatton z; = [1 1], and forwards it
to nodeD; more generallyzs = z1 © x2, whered is the bit-wise xor operation. Nod® multicasts the incoming
packetzs to both outgoing linksDFE and DF'. The flow of packets in this experiment is shown in Fig. 1(0). |
every experiment, probe packets,, z5) are sent from4, B and may or may not reach, F', depending on the
state of the links. Observe that with the network coding apph, link CD becomes identifiable. Moreover, we
have avoided the overlap of probes on link CD during each raxgat.

Table | lists the 10 possible observed outcomes, the stdieksfthat lead to a particular outcome, the probability
pi,1 = 1,..10 of observing this outcome, and the number of timgsi = 1,...10 we observe this outcome in an

sequence ofV independent experiments. The probability of observing atcame,p;, can be computed from the
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# Is link functioning (1) or not (0)?| Original (5-link) topology | Prob. | #times || Reduced Multicast Tree Reduced Reverse
actual probes received at: observations Multicast Tree
Ac | BC | cp | DE| DF E F Pa E|F| pPMT EF| pRMT
1 Multiple possible events - - Po no 0|0 Po (0,0) Po
2] 10| 1|0 1 - T p1 n1 pi+p2+ps || (1,0) | p1+ps+pr
3 0 1 1 0 1 - 9 P2 n2 01 (0,1) | p2+0p5+ps
4 1 1 1 0 1 - 1 P x2 D3 n3 (1,1) | p3+pe +p9
5 1 0 1 1 0 x1 - Pa ny4 P4+ ps + p6 (1,0) | p1+pa+opr
6 | 0 1 1 1 0 T2 - Ps ns 1|0 (0,1) | p2+ps+ps
7 1 1 1 1 0 1 D T2 - P6 ne (1,1) | p2 +ps +po
8 1 0 1 1 1 1 1 p7 nz p7 +ps + Py (1,0) | p1+pa+p7
9 0 1 1 1 1 T2 T2 ps ns 111 (0,1) | p2 +ps5+ps
10| 1 1 1 1 1 1 O a2 1 @ T2 P9 ng (1,1) | ps+ps+po
TABLE |

THE 10 LEFTMOST COLUMNS OF THIS TABLE REFER TO THES-LINK TOPOLOGY SHOWN INFIG.1(C). THEY SHOW THE POSSIBLE PAIRS OF
PROBES COLLECTEN(i.e., THE OBSERVATIONSy € €)) AT RECEIVERSE AND F, THEIR PROBABILITIES Py, AND THE NUMBER OF TIMESN
EACH OBSERVATION OCCURRED THESE OBSERVATIONS DEPEND ON THE COMBINATION OF LOSE)) AND SUCCESS(1) ON THE FIVE
LINKS, WHICH HAPPEN WP. &. THE REMAINING RIGHTMOST COLUMNS SHOW THE HOW THE SAME PROBESAN BE INTERPRETED AS
OBSERVATIONS AT THE RECEIVERS) OF THE REDUCED TOPOLOGIESNAMELY THE MULTICAST TREE AND THE REVERSE MULTICAST TREE

SHOWN IN FIG.2; AND THEIR CORRESPONDING PROBABILITIES

loss probabilitiesy = (a1, ...a5) of the five links (AC,BC, CD, DE and DF respectivel§.g., for outcomes 1-4:

po=  Llopi——py=1—(1-araz)(l —a3z)(l — asas)
pr=  (1—an)as(l - az)as(l—as)

P2 = a1(1 —ag)(l — ag)ay(l — as)

p3 = (I—a1)(1—a)(l —as)as(l —as)

(6)

and we can write similar expressions for the probabilitieshe remaining observations. Thus, we can explicitly
write down the probability distribution of the observatioR,.

In a sequence oV = Z}O n; independent experiments, the frequency of each evinp; ~ %f. After sending
N independent probes, the log-likelihood function of theeskations given the set of parametdrs; },i = 1...5
is: L(a, ag, a3, aq, a5) = Zig n; - log p;(«r) The MLE would compute the's that maximizeL(«). O

In general, we may be interested in estimating one ofathariables, some of them, or all five of them. In this
section, we discuss a single link, namely liakD. Notice that the remaining four links can depict the equaal

paths connecting’ D to the sources and receivers.
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B. Identifiability of One Link

Let's focus on a single linkC'D with loss probabilityacp. Consider Fig.2 and Fig. 3, which generalize the
motivating example of the previous section. Fig.2(a) dispiimk C'D together with paths that connect it to the
sources and the receivers. In other words, links other ghiBncan be viewed as summarizing pathsgy. AC could
correspond to a path from A to C, possibly consisting of thecatenation of several links.

For a given a choice of sources and receivers and a codingnectiescribed in Section V-A, we want to translate
the conditions for identifiability of linkC'D in Definition 2 to graph properties of the network. Our intit is
that a link C'D is identifiable if C' is a source, a coding point or a branching point, @&nhds a receiver, a coding
point or a branching point. These are the structures depint&ig. 3, where we want to identify the link-loss rate
associated with edg€ D and interpret the remaining edges as corresponding to ;paiipsAC could correspond
to a path from A to C, possibly consisting of the concatematibseveral links. The top two cases of Fig. 3 depict
the simple cases where linKk is a source, or linkD is a receiver, the four bottom cases depict the case whiere
and D are coding or branching points.

To formalize this intuition, consider the following two oditions:

« Condition 1: At least one of the following holds:

@ Ces.

(b) There exist two path§X;,C) and (X, C) that do not employ edg€'D with X, X € S.

(c) There exists two path&X;,C) and(C, X5) that do not employC'D with S; € S, X5 € R.

« Condition 2: At least one of the following holds:

(&) D € R.

(b) There exist two pathsD, X;) and (D, X5) that do not employ edg€' D with X;, X5 € R.

(c) There exists two path§€X;, D) and (D, X2) that do not employC'D with X; € S, X, € R.

Theorem 4.1:Link CD is identifiable if and only if both Conditions 1 and 2 hold.

Proof: To prove that conditions 1 and 2 are necessary, considerctmatition 1 is not satisfied. The@
can only receive one stream of probe packets, since it isexiad to only one source. There exists an edge
through which this stream of probe packets arrives to n@de&he link loss rate associated with lidkD cannot be
distinguished from the link loss rate associated with knkore formally, if o, is the success probability associated
with link e andacp the loss probability associated with lifkD, then the variables.. and acp appear always
together €.g.,in the expressiol — (1 — a.)(1 — acp) in the probability functionP,. Therefore there are many
pairs of values(a., acp) that lead to the sam&,. According to definition 2, this means that lifkD is not

identifiable. Similar arguments hold for the other conditicand this completes the forward argument.

Next, we prove that conditions 1 and 2 are sufficient for idgimg link C'D.
First, let us consider Case 1, where Conditions 1(b) and &)satisfied. The remaining cases are similar and
are discussed at the end of this proof. These conditions theathe paths involving linkC'D should be as depicted

in Fig. 2(a): AC, BC, DE, DF can be either links or paths from/to the sources/receiasgactively. In the latter
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Fig. 2. Reductions. (a)depicts the real topology based on conditions 1(b) and Z{g. goal is to identify the loss rate of linkD. A, B are
sources and¥, F receivers.AC, BC, DE, DF can be either links or paths from/to the sources/receivargb), we reduce the real topology
to a multicast tree with three links: “aggregate” lickBC D (which transmitssomesymbol,z1, z2 or x1 @ x2, below D,) and linksDE, DF
(which broadcasts that symbol). (o), we reduce the real topology to a reverse multicast tree thitbe links: AC, BC' and “aggregate” link
CDEF (which transmits the symbol coming i D to at least one receiver). As shown in detail in Table |, theeotations in the reduced
topologies are simply unions of disjoint observations ie triginal topology, and their probabilities are the sum af probabilities of the
corresponding observations in the original topology.

case (when AC,BC and DE, DF depict paths) the path loss pilithaian be computed from the loss rates of the
corresponding links. Essentially, Case 1 (also shown in Fig5-links, Case 1) generalizes the motivating example
of the Section 5, where the linkdC, BC, DE, DF are replaced by pathdC, BC, DE, DF' with the same loss
probability.

In Definition 2, and consistently with [2], we defined lifKD as identifiable iff the probability distributio®,,
uniquely determines the parameter§ i.e., iff for o, o’ € [0,1)!®], P, = P, impliesa = o'. To establish the
identifiability of C'D, we repeatedly apply the identifiability result for a 3-linkulticast tree (from [2]) and for
a reverse multicast tree (leveraging the reversibilityperty in Theorem 5.1, Section V-D.2). Before we proceed
with the main argument, we need to describe two reductiam® fthe actual 5-link topology shown in 2(a), to a
multicast tree (MT) and a reverse multicast tree (RMT), shdw?2(b) and (c), respectively.

Reduction to a Multicast Tree (m$tart from the original 5-link topology in Fig. 2(a) with krloss ratesy and
an associated probability distribution of observatidfas Define the multicast tree in Fig. 2(b) with parametefs

and associated probability distributid?f”*, in the following way:

OL%E:OLDE, O/BF:OZDF, andl—aQBCD:(1—aAc-ch)-(1—a0D). (7)

In other words, for linksDFE and DF we use the same loss probabilities. LiAlBC D in Fig. 2(b) summarizes

"Recall thato refers to the vector of all loss probabilities, and to the loss probability of one particular edge
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the operation of linksAC, BC and CD: node D receives a packet ifAC' or BC' function) andCD functions;
therefore the loss probability of inkBC'D, o}~ depends on linkstC, BC, CD. Note thatP}* can be directly
calculated fromP,, since, each event i is the union of a disjoint subset of events{j* and has probability
equal to the sum of probabilities of those eventdin (as indicated in Table ).

The 3-link topology consisting oABCD and DE, DF is a 3-link multicast tree. Theorems 2 and 3 in [2]
guarantee thatpr, apr andaapcp are identifiable in this case. Namelf”? = P implies /™ = a™.

Reduction to a Reverse Multicast Tree (Bimilarly, we can reduce the original topology in Fig. 2(ajthw
parameters: and an associated probability distributiéh, to the reverse multicast tree in Fig. 2(c) with parameters

a” and associated probability distributid?f, in the following way:
OZQXCZOLAc, Oz%C:OLBc, andl—OLEDEF:(l—OLCD)~(1—OLDE-OzDF). (8)

That is, the “aggregate” link’D E'F' transmits a symbol belo@' to at least one receive?, F' with loss probability
depending on the link€' D, DE, DF'. This is a reverse multicast tree (with linksdC' and BC' merging into the
“aggregate” linkCDEF'). The maximum likelihood estimator for the reverse multidcese has the same functional
form as a 3-link multicast tree, as our reversibility resstablishes (see Theorem 5.1 in Section V-D.2), and the
same MLE as in [2] can be used. Therefore, using again the neaunt of [2] and similar arguments as in the
previous paragraph, we have thaf = P} impliesa” = a".

Proving identifiability in the original topology, via coradiction Consider the 5-link topology in Fig. 2(a) and
assume that there exiata’ € [0,1)®! for which P, = P, anda’ # /.

Use the multicast tree reduction to map loss rate® o™ and associated probabilitig3, to P*. Similarly,
reduce the loss rates’ to o/, and associated probabiliti€’,, to P™. Since P, = P,/, we conclude that

P™ = Pm. Because the topology in Fig. 2(b) is identifiable [2], we et o™ = /™. This implies that:

o'pp=ad'hp=0apy=app 9)
a’DF:a'gF:a’BF:aDF (10)
1-(1—ad'ac-a'pe)-(1-d'cp) =dypep” = alpep =1~ (1 —aac - apc) - (1 —acp). (11)

Applying similar arguments for the reduction to a reversdtivast tree we get” = o'", and as a result:

a0 =adyo =y = aac (12)

0‘390 = a/BCT = age = apc (13)

1-(1—dpr-dpr)-(1—d'cp) =dpppr =abppr=1—(1—apr-apgr)-(1—acp). (14)
From equations (9)-(14) we conclude that= &, which is a contradiction. Thereforé,, = P, implies that

a = o, i.e., identifiability.
The remaining cases (combinations of clauses (a),(bn(€adnditions 1 and 2, other than 1(b) and 2(b)) are

shown in Fig. 3. For example Condition 1(a) or 2(a) corresbtinthe 3-link multicast or reverse multicast tree
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and the MINC MLE can then be used directly on these trees. iiond 1(c) or 2(c) lead to the Cases 2-4 in Fig.

3) and similar reductions as in Case | can be used to provéifideility. This completes the proof. [ ]

C. Maximum Likelihood Estimator for One Link

The above proof of identifiability also indicates a method dbtaining a maximum likelihood estimate of the
loss rate of a single link. Refer again to Fig. 2(a), where lthk of interest is link CD and the other links
can be interpreted as summarizing the paths from/to thecesuRefer also to Table | and consider the columns
corresponding to the reductions to a multicast and a revargticast tree. The procedure for computing the MLE

Gacop of link C'D is summarized in Alg.1.

Algorithm 1 Compute the MLE of one linkC'D. (Refer to Fig. 2 and Table 1.)
1) Consider the reduction of a 5-link topology to a 3-link tzdst tree. Each observation at the leaves of

the multicast tree{(0,0), (0,1),(1,0),(1,1)}, is the union of disjoint events in 5-link topology. The log-

likelihood function of the multicast topology is:
Lm(aABCD, apg, aEF) = Noo log P(OO) “+ nogo 10gP(01) “+ n19 log P(lO) +n11 10gP(11)

wherengy = ng,no1 = n1 + na + N3, N1 = Ng + n5 + Ng,N11 = Ny + ng + ng and the corresponding
probabilities areP(00) = pg, P(01) = p1 + pa + p3, P(10) = ps + ps + ps, P(11) = p7 + ps + pg. Use
the low complexity algorithm in MINC [2] to compute the MLE teémates on this 3-link multicast tree in
namely,a g, A5 r, AApop-

2) Similarly, consider the reduction to a reverse multiteest. The reversibility result in Section V-D.2 establishe
that the MLE of the reverse multicast tree is also a functiwat tan be computed efficiently using MINC
[2]. Use MINC to compute the MLE estimates 6f, -, &5, GG ppr-

3) Replace the MLESY, ., &3, &5, &5 into the log-likelihood function of the 5-link topology, \idh now

becomes a function of a single variahkle p. Find acp that maximizes it:

dcp = argmax, . L(acpldyc, dpc: 65 g, ADF) (15)

Theorem 4.2:The estimateicp computed by the above procedure is guaranteed to be the Mk gfin the

original 5-link topology (.e., the value ofaf. , in o = argmax, L()).
Proof: It follows from the following lemmas.

Lemma 4.3:Leta = (aac, apc, acp, ape, apr) and consider the MLE of the 5-link topology= argmax, L(«).
Let o™ = (aapcp, @4, as) and consider the MLE of the 3-link multicast topology" = argmaxL™ (a™). Then:
Gpp =4&Fy and app = afp.

This lemma says that although the log-likelihood of therikltopology and the 3-link multicast are different

functions, they are maximized for the same values of vaggbl,, as). Therefore, we can use the estimates
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Fig. 3. Configurations (i.e., combinations of Conditions 1 and 2) that allow to identify the loss rate of a single link (CD).Recall that
links other than CD, can correspond to paths with the sanmegosbability. The top of the figure shows a 3-link topologyend C is a source
(of a multicast tree) or D is a receiver (of a reverse multi¢eee). The trivial case that C is a receiver and D is a treeesponds to a single
link topology and is omitted here. The bottom of the figureveh@ 5-link topology and four configurations (choices of sesrand receivers)
where neithelC or D are edge nodes and packets are sent and received at the eligednd3, £ and F'. Casel is our familiar motivating
example; Case is similar to a single multicast tree rooted At Case3 uses sourcegl and EZ and linear combinations whenever two flows
meet; Casel does the same for sources B and E and is equivalent to an inverse multicast tree (with sinat
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&5, &5 obtained in the multicast topology, as the optimal values.gfas in the original topology. The proof
of the lemma is provided in Appendix A.

Using similar arguments and the reversibility property eton V-D.2 we can also show that:

Lemma 4.4:Let o = (aac, aBc, @cp, pE, apr) andé = argmax L(«). Leta” = (aac, apc, acpry) and
&" = argmad’ (o). Then:dac = & and dac = dpe.

Having established thal’, ., &, &, &5 are the optimal values, we can replace them into the logliked
and maximize for the only remaining variahle . Indeed,L(acp) is concave imep and has a unique solution
in [0, 1), which can be found by solving% = 0, which turns out to be a first degree equation in the unknown
acp. The proof is provided in Appendix A.

]

Complexity.This computation of the MLE ofi¢p is very efficient. In the first two steps, we call MINC [2] twice
once for the multicast and once for the reverse multicast tytBNC is known to have low computational complexity,
because it exploits the hierarchy of the tree topology ttofée the probability distribution and recursively cdbte
the estimates. Furthermore, in this section, the 3-linkticadt and reverse multicast trees are very small, making

this computation even faster. The last step involves sglairfirst degree equation for one unknown.

V. TREE TOPOLOGIES

In this section, we consider tree topologies, and we desa@ily design choices in the four subproblems.

A. Probe and Code Design

In tree topologies, there exists a unique path connectiygt@o nodes. For a network witd/ sources, we
propose to use probe packets of lengthbits, where the packet sent by sourices simply a vector with value
one only at position:

x;=(0,0, ..., 1, ..., 0).

Intermediate nodes perform bitwiser on their received packets. This very simple design effebtikeeps the
presence of each source orthogonal from every other solilie.ensures versatility, in the sense that, no matter
which probe packets getor -ed, they will not cancel each other out. For most practiceippses, this simple probe
design is sufficient: a single IP packet can be up to 1500Budeg the headers) and thus can accommodate
roughly 12,000 probe sources (bits). In large networks, care also spatially re-use probe packets by allocating

the same probe packet to all sources whose packets do not meet

B. ldentifiability

Our goal in this section is to identifall links at the same time. It is sufficient to ensure that each im
identifiable, according to the conditions of Theorem 4.1isTik true in all directed trees where each leaf node is

either source or a receiver, and each intermediate noddisatthe following mild conditions: (i) it has degree at
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least three (which is true in all logical links); (ii) it has-degree at least one (otherwise, the node should be a
source); and (iii) it has out-degree at least one (othertfisenode should be a receiver).

Example 2:Table Il lists which links are identifiable in the four bottarases of Fig. 3, if we use our approach
vs. if we use multicast tomography. All four configuratiorepitt the same basic 5-link topology, but they differ in

the choice of sources and receivers. Our approach is abtketdify all links for any sets of sources and receivers.

This is not always the case for the multicast tomography. O
Case | Network Coding | Multicast Probes
1 all links DE, DF
2 all links all links
3 all links AC,CB
4 all links no links
TABLE 1l

IDENTIFIABLE LINKS IN THE FOUR CASES(DIFFERENT CHOICES OF SOURCES AND RECEIVERBOR THE SAMES5-LINK TOPOLOGY)

DEPICTED AT THE BOTTOM OFFIG. 3.

C. Routing, Selection of Sources and Receivers

Routing in trees is well defined: there exists a single patth tonnects a source to a receiver, through which
probes flow. For a tree witlf leaf nodes, some leaves act as soutgemnd the remaining leaves act as receivers
R = £\S. Intermediate nodes simply combine (xor) the probes comimall incoming links and forward (multicast)
to all their outgoing links. This section looks at situasorhere we may have some freedom in the choice of the
nodes that act as sources and receivers. If such flexibdityot available (as it is assumed in most tomography
work), this step can be skipped. We study the effect of thectieln of sources and receivers on estimation accuracy
and we come up with some empirical guidelines for sourcecele obtained through a number of examples and
simulation scenarios.

Link loss tomography is essentially a parameter estimatioblem, and different choices of sources and receivers
lead to different estimators. That is, for a fixed number afhas, each topology leads to a different estimation
accuracy; put differently, to achieve the same mean squaoe @/SE), we may need to use a different number
of probes for each topology.

In Example 2, we saw that with network coding all links arenitifgable, while if we use two multicast trees they
are not. In Appendix B.2, we revisit the basic 5-link topolayf Fig. 3 and we show that, even though with network
coding links are identifiable for all four cases, the estiorabccuracy differs depending on the number of sources
and their relative position in the tree. This idea also aspto larger topologies. For example, in Appendix B.3,
we consider a 9-link tree and we run simulations for différetmber and location of sources and we summarize

the intuition obtained.
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In general, the optimal selection of the number and locatibsources depends on the network topology, the

values of link-loss rates, and possibly the number of enmgaayrobes. This is currently an open problem.

D. Loss Estimation Algorithms

1) Maximum Likelihood Estimation : Ideally, it is desirable to use optimal (maximum likelihgasstimation
to estimate the loss rates from the observations at thevexseiln the special case where the topology is a a tree,
and we can choose one source and several receivers so asltprebes acrosa multicast tree an efficient ML
estimator (MINC) has been designed in the pioneering pa&jér The reversibility property established in Section
V-D.2 below, allows us to use the same efficient estimatorh@rdverse multicast treas well (where one leaf is
a receiver, all other leaves are sources and all intermeediadles perfornxor ).

Furthermore, Alg. 1 presented in Section IV-C provides ditieht way to compute the MLE foany single
link using the MLEs on a multicast and on a reverse multicast tneparticular, Alg. 1 can be applied to estimate
the loss rates of any link of interest, by focusing at thik land by considering the paths from/to the sources
as equivalent links with the same loss rate, thus leadindnéopreviously studied 5-link topology. This result is
particularly useful in practice, where typically one isargsted in inferring the loss rates on a few congested links.
Furthermore, it can be used to infer all links, one at a time.

Beyond these special caséere is no known computationally efficient algorithm to qarte the MLE of all
links at the same time. Therefore, we propose three heugstimation algorithms and evaluate their performance
through simulation. The first two (subtree decompositiod aminc-like heuristics, in sections V-D.3 and V-D.4,
respectively) are specific to trees, while the third (bepebpagation, in section V-D.5) also applies to general
graphs.

2) Reversibility — A Structural Property : Consider a tree topologyr = (V, E) with £ leaf nodes,S of
which act as sources and the remainiRg= £/ S act as receivers of probes. Routing fréhto R is given g.g.,
determined in the routing subproblem) and defines a dinreaio every linke € F, along which probes flow).

Definition 3: We call the triplet G, S, R) a configuration

We define as dual the configuration that results from revgrie orientation of all links in the network, and
from having theS sources become receivers, while tRereceivers act as sources. More formally:

Definition 4: Consider the original configuratioit?, S, R). Consider the grapty? = (V, E) that has the same
nodes but reversed edgé®., e = (i,j) € E iff e = (j,i) € E% and loss ratex? = a., associated with every
edgee? € E?. Select sources? = R and receiverR? = S. We call the(G?, S, R?) the dual configurationof
(G,S,R).

For example, a multicast tree is the dual configuration ofvense multicast tree (Cas@sand4 in Fig. 3). In

Appendix B, we show that the dual configurations of Fig. 2Ha)l Fig. 22(b) result in the same mean square

8As mentioned in the related work section, the key obsematiere was the computation of the probabilitigs at each intermediate node,

proceeding recursively from the leaves to the root. Thenptmametersy’s can be computed from the's.
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error bound. In fact, a closer look reveals that not only thki@s but also the functional forms of these two ML
estimators coincide. The following theorem generalizés tiotion to general trees.

Theorem 5.1:Consider a configuratiofz, S, R) with observations at the receivells and probability distribution
P, = {p(y|a),y € Q}. Consider its dual configuratiditz¢, R, S), with observation§¢ and probability distribution
PZ. Then, there is a bijection between outcomes and their pibifies in the original(y € Q, p(y|a) and in the
dual configurationy? € Q4, p(y4|a)).

Proof: Let G = (V, E) be the original tree graph, withE| = n, andG? its dual. In every experiment, there
exist2™ possible error events, depending on which subset of the kak Observing the outcomes at the receivers
corresponds to observing unions of events, that occur wmighcorresponding probabilitye(g.,as in the example
of Table I). We show that for every observable outcome, tltaucs with probabilityp in G, there exists exactly
one observable outcome that occurs with the same prolyainiliz? and vice-versa. This establishes a bijection.

With every edge: of G, we can associate a set of souréds) C V that flow through this edge, and a set of
receiversR(e) C V that observe the flow through Our main observation is that the pdif(e), R(e)} uniquely
identifiese, i.e., no other edge has the same pair. In the dual configuratibnedgee is uniquely identified by
the pair{R(e), S(e)}. If in G edgee fails while all other edges do not, the receivétée) will not receive the
contribution in the probe packets of the sourégs). If in G¢ edgee fails while all other edges do not, the receivers
S(e) will not receive the contribution in the probe packets of soeircesk(e). Thus there is a one-to-one mapping
between these events. Using this equivalence, an obserwatdome consisting of a union of events can be mapped
to an observable outcome at the reverse tree. [ |

Corollary 5.2: The maximum likelihood estimators for a configuration arsldual have the same functional
form.

Proof: The bijection established above implies that a configunadiad its dual have the same set of observable
outcomes, with the same probabilities. Therefore, theyehthe same likelihood function and therefore the same
maximum likelihood estimator. [ |
We note that this corollary establishes reversibility ofdy the maximum likelihood estimation. The performance
of suboptimal algorithms may differ when applied to a configion and its dual.

Application to measuring directional networks. It is also important to note that the notion of dual configioms
doesnot assume that the loss rates in both directions of a link aresdinge. Reversibility means that the two ML
estimators for a configuration and its dual are describechbysame function; however, the loss parameters we try
to estimate (using the same estimator function) in the twections may have different values. In fact, consider
a tree with links that have different loss rates in the twaclions. In this case, the reversibility property can be
exploited to efficiently monitoring all links and directisnindeed, it is sufficient to send probes over only two
configurations: the original and its dual.

Corollary 5.3: Consider a tre€; with |£| leaves, where each leaf is either a source or a receiver. 8\iaterested
in measuring the loss rates in both directions for all linkshe tree. Using network coding saves a factor Of

in bandwidth used by probes, compared to the multicast fppecach.
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Proof: Consider a tree configuration witlf| leaves. To measure the link loss rates in both directionsifor
edges of the tree, using the multicast approach, we needetd usulticast trees. Indeed, let= AC be the link
adjacent to leafd € L, we can measura ¢ only if A is the root of the multicast tree. Using the network coding
approach, for any choice of sources and receivers, we ordy @ perform two rounds of measurements: one on
the networkG and one on its duak®. [ |
This corollary can also be interpreted as a tradeoff in tiveal measurement. We can eitHé-fold increase the
measurement bandwidth (using multicast probes), or alfgerinediate nodes to do linear combinations (network
coding). The former option keeps intermediate nodes simplthe expense of using extra bandwidth. The latter
option sends exactly one probe per link per experiment, &gtiires some operations from intermediate nodes.

3) Subtree Decomposition This algorithm partitions the tree into multicast subtreegarated by coding points.
Each coding point virtually acts as a receiver for incomirgv# and as a source for outgoing flows. As a result,
each subtree will either have a coding point as its sourceyilblhave at least one coding point as a receiver. In
each subtree, we can then use the MLE estimator (MINC) pexpos[2].

Note that we can only observe packets received at the edde afetwork but not at the coding points. However,
we can still infer that information from the observationstla¢ receivers downstream from the coding point. The
fact that we infer observations of the coding-points from tbservations of the leaves is what makes this algorithm

suboptimal, while MINC in each partition is optimal.

Algorithm 2 Subtree Decomposition Algorithm:
Consider a tre€7, with sourcesS and receiversk. Each source sends one probe packet. Each receiver ree¢imasst one probe packet.

« Determine the coding points. These partitiGhinto |7| < 2S5 — 1 subtrees.
o For each of thg7| subtrees:

— If the multicast tree is rooted at a coding point:

+ If any of the descendant receivers receives a probe, usexperiment as a measurement on the subtree,
+ otherwise, w.pp assume no node iR received a probe packet, and w(f.— p) ignore the experiment.

— If the multicast tree is rooted at a sourcg:
Consider each coding poiit that act as receiver:

= if no descendant receivelS(R) observed a probe, assume, wppthatC received a packet, and w.pl — p), that it did not.

* otherwise

- if at least one ofC(R) observed a linear combination af, deduce that receivedz;.

We introduce the probability in order to account for the fact that, if none of the receiiar€'(R) receives a
packet, this might be attributed to two distinct eventsheaitthe coding poin€ itself did not receive a packet, or
did receive a packet, which got subsequently lost in theatedent edges. For example, in F¥, consider the tree
rooted atSi, if Ry receivesr; or x1 + x2 we deduce that; was received at nodé If R, receivedz,, we deduce
thatz; was not received at node If R, does not receive a probe packet, then, with probabilityp, we assume
that4 did not receive a probe packet. Ideatlyshould match the probability that correctly received a probé€.,
~v¢ in the terminology of [2]). This depends on the graph streetand on the loss probabilities downstreanChf
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(S1,R1)  (S1,R2) (S2,R2) (S2,R3) (S2,Ra4)

Fig. 4. Bipartite graph corresponding to the 9-link examipé® in Fig.23. It indicates which edges belong to which olsge paths.

and possibly prior information we may have about the linksloates.

4) MINC-like Heuristic : For every multicast node, we can use the MINC algorithm diesdrin [2]. For every
coding point, we can use reverse MINC, exploiting the rebdity property that we established in the previous
section.

Similarly to the subtree decomposition, we infer which melhave been received by an interior nddéom
observations at the downstream receivers. In particdlat,least one receiver downstreamiofias received a probe
with any content (the probe from at least source and potntiantains thexor of probes from multiple sources),
then we can infer thaf received the packet. This can be used to compute the praipabil in the terminology
of MINC [2]. If no downstream receiver got any probe, we decidp.p whether thel received a probe or not,
exactly as in the subtree decomposition. The reductiona/shio Figure2 use similar arguments and can serve as
examples.

Different from the subtree decomposition, which estimdkesa’s locally in each subtree, we use the mapping
from +'s to o’s provided in MINC [2] to estimate the’s in the entire graph. This heuristic is optimal for multicast
and reverse multicast configurations, and for configuratibiat are concatenations of the two, but suboptimal for
any other configuration.

5) Belief Propagation We propose to use a Belief Propagation (BP) approach, situlavhat was proposed
in [26]. Unlike the previous two heuristics, which are sfiecto tree topologies, the BP approach also applies
to general graphs. The first step in the BP approach is toectbatfactor graph corresponding to our estimation
problem. Fig. 4 shows the factor graph corresponding to thekdtree shown in Fig. 23. This is a bipartite graph:
on one side there are the links (variable nodes), whose &iss we want to estimate; on the other side there are
the paths (function nodes) that are observed by each recpiabe. An edge exists in the factor graph between
a link and a path, if the link belongs to this path in the oraigraph. Note that, in tree topologies, there exists
exactly one path for every source-receiver pair; this is thet case in general graphs. Once the factor graph is
created from the original graph, each received probe trgygeessage passing and results in an estimate of link
loss probabilities; these estimates from different pradmesthen combined using standard methods [26]. The result

is an estimated.) of the actual loss probabilityn(.) of every linke € E.

May 24, 2010 DRAFT



23

Fig. 5. A tree with45 links used for simulating the suboptimal estimators.

E. Simulation Results

In this section, we evaluate the heuristic estimators viaufation and we compare them to each other as well as
to multicast-based tomography. The main finding is thatgisiore than one sources helps: using multiple sources
and network coding (even with suboptimal estimation) orftpens a single multicast tree (even with optimal
estimation), thus demonstrating the usefulness of ourcambr.°

Consider the 45-link topology shown in Fig. 5, where all Bnkave the same loss rate We will estimatex
and compare different methods in terms of their estimatmoueacy. First, we did simulations fer = 0.3, a large
number of probes, and repeated for many experiments. Westbakthe mean square errag¢/ G E) at each link.

The results are shown in Fig. 6 for the following three altjois:

« a single multicast sourc&; and maximum likelihood estimation (top plot)

« two sourcesS;, Sa, network coding at the middle nodeg, and the MINC-like heuristic (middle plot)

« the same two sources and coding point, with the subtree a&timalgorithm (bottom plot).

Notice that in the case of two sources, the 45-link topolagpartitioned into 3 subtrees: one rooted4afwhere
probez; flows), another rooted ab (wherex, flows) and a third one rooted @& (wherez; + x5 flows).

One can make several observations from this graph. Firgiguso sources and network coding, even with
suboptimal estimators, performs better than using a simgiléicast source and an ML estimator. Indeed the residual
entropy (which is the metric that summarizes & E across all 45 links) is lower for two sources with the MINC-
like (ENT = —317.9) and for the subtree-decompositioR ¥ T = —314.9) heuristics, than it is for the single
source MLE ENT = —294.5). This illustrates the benefit of using multiple sourcexd&, notice that théd/SE

for individual links is smaller in the lower two graphs thanthe top graph, for all links except for links3, 44,

9Note that using more than one multicast sources, withowvarit coding, would traditionally require to combine the ehstions from the
two trees in a suboptimal way [3], thus further degrading gheformance; that is why skip the comparison and comparg agdinst a single

multicast tree and optimal estimation, which has the bedbpeance among baselines.
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single source, maximum likelihood, ENT=-294.5
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Fig. 6. Comparison of one multicast source + MLE vs. two sesir¢ network coding + suboptimal estimation(subtree decsitipn and
MINC-like heuristic). We show the\/ SE for each link in the 45-link topology.

45, for which it is significantly higher. This is no coincidendimks 43, 44, 45 are the middle ones (CA, CB, CD

in Fig. 5). This is due to the fact that we cannot directly olieghe packets received at the coding point C and we
have to infer them from observations at the leaves of sulitreted at B. The performance of the heuristics could
further improve by using the following tweak: we could esiten what probes are received at C, using observations
from leaves not only in the subtree rooted at B, but also froendubtrees rooted of A and D.

The above simulations were for a single valuecof= 0.3. We then exhaustively considered several values
of a (same on all links) and: (the number of probes). The results are shown in Fig. 7. Weseanthat, even
with suboptimal estimation, using two sources consisyentitperforms a single multicast source, even with MLE
estimation. This is apparent in Fig. 7 where #i& T' metric for the single source (drawn in bold lines) is cormsigly
above the other two algorithm8.

In Fig. 8, we compare the MINC-like and the BP algorithms othex 45-link network, in terms of the ENT
measure, and as a function of the number of proesBoth algorithms vyield better performance (lower ENT
values) as the number of sources increases from one to five .MINC-like algorithm performs better for the
multicast tree, in which case it coincides with the ML estionaas well as for the two source tree. However,
belief propagation offers significantly better performaror the case of three and five sources. This trend can be
explained by looking at the number of cycles in the factopbrad cycle is created in the factor graph of a network
configuration when (1) two different paths have more thanlerkein common and (2) a set of. paths, sayV/,,,

covers a sek,, of m links, with each of the paths i/, containing at least two links i#,,. As the factor graph

10Two observations on th& NT metric. First, the differences in the value BINT are significant, although this is not visually obvious;
recall thatENT is defined by taking the sum of tHeg of the M SE’s. Second,ENT can be< 0, it is the differential entropy that matters.
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Bold line: single source + MLE.

Same loss prob. a=0.3 on all links. Dashed lines: two sources + suboptimal algorithms
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Fig. 7. Comparison of one source with MLE, to two sources wsitilhoptimal estimation (MINC-like and subtree estimatiégoathms) for

the 45-link tree. The comparison summarizes the eEdfT over all links.
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Fig. 8. Estimation error for two suboptimal algorithms (BfdaVIINC-like) for the 45-link tree. ENT vs. number of probes.

becomes more and more cyclic, the performance of the sudupt@lgorithm degrades.

Finally, in Fig. 9, we compare the performance of belief @oation to ML estimation using a single source. We
considered two trees: the 45-link and another, randomleiggad 200-link tree. BecaudeNT' captures the error
over all links, and the two considered topologies have dbfie number of links, we us&NT,, (defined as the
ENT value divided by the number of network links) for a fair corripan of the two topologies® NT,,, for the 45
link tree is better (lower) than that of the 200 link tree fogimen number of probes. We see that the BP algorithm

closely follows the optimal ML estimator, for the range ofnmioer of probes and for both trees considered.

VI. GENERAL TOPOLOGIES

In this section, we extent our approach from trees to geriepallogies. The difference in the second case is the
presence of cycles, which poses two challenges: (i) protagsmeet more than once and (ii) probes may be trapped
in loops. To deal with these challenges, in this section, m@@se (i) an orientation algorithm for undirected graphs

and (ii) probe coding schemes, whose design is more invdlvad in trees.
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Average (per link) ENT for the 45 link and 200 link multicast trees
ML estimator and message passing (alpha = 0.7)
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L \\\\ —— 45 link:message passing | |
A -+ - 200 link:message passing|

average ENT

1 1 1 1 1 1 1 1 |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
sample size (N)

Fig. 9. Comparing BP to MLE for the 45-link and 200-link tredsN T, is ENT divided by the number of links.

The approach followed by prior work on tomography over gaheetworks was to cover the graph with several
multicast [3] and/or unicast probes [4], [6]. This approdates several challenges.

(a) The selection of multicast/unicast probes so as to nir@nthe total bandwidth (cost) is an NP-complete
problem.

(b) Having several probes from different source-destimapaths cross the same link leads to bandwidth waste
(especially close to sources or receivers).

(c) Finding an optimal and/or practical method to combire dbservations from different multicast/unicast paths
is a non-trivial problem, addressed in a suboptimal way [3].

In contrast, using network coding allows to measure alldimlth a single probe per link and brings the following

benefits:

(a) It makes the selection of routes so as to minimize cosinefl complexity.

(b) It eliminates the waste of bandwidth by having each lirdvérsed by exactly one probe per experiment;
furthermore, each network coded probe brings more infaomaas it observes several paths at the same time.

(c) It does not need to combine observations from differ@peements for estimation (as all links in the network
are probed exactly once in one pass/experiment).

Because of the aforementioned features, the benefits of éhgork coding approach compared to traditional

tomographic approaches are even more pronounced in gaopodbgies than they were in tree topologies.

In this section, we describe the framework for link loss tgmaphy in general graphs. In particular, we address
the four subproblems mentioned in Section III-B: (1) id&akility of links (2) how to select the routing (3) how
to perform the code design, and (4) what estimation algmstko use. We evaluate our approach through extensive
simulation on two realistic topologies: a small researctwoek (Abilene), used to illustrate the ideas; and a large

commercial ISP topology (Exodus), used to evaluate theopadnce in large graphs.
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P1 1-2-4-5-9 P4 1-3-5-9

P2 1-2-4-7-8-9 = +=rc="- P5 1-6-7-8-9
— - — -+ P3 12359 ccccccacan-- P6 1-6-10-8-9
——— — P7 1-6-10-9

Fig. 10. Example of a general topology (Abilene). For onereeynode 1), we show the orientation of edges, the resuténgiver (node 9)

and the possible paths from the source to the receier.(. P7).

A. ldentifiability

The identifiability of an edge given a fixed monitoring scheffoe a known topology, set of sources, receivers,
and coding scheme) follows from Theorem 4.1 in Section V. GRhe edge we would like to identify, and we
interpret the edges AC, BC, DE and DF as paths that connecbGurces and destinations. In particular, we are
able to identify the link loss rate of edge CD from the probelected at the receivers, if we can reconstruct the
table associated with one of the cases in Fig. 3 (all tablegesvided for completeness in Appendix B.1).

More generally, in a general topology, we can identify the gfepaths{P} that connect the sources to all
receivers. LetP(e) denote the set of paths that are routed from a source to aveecand employ an edge
Assume that the receivers can infer which of these pathsatgduring a given experimeritg, non of the links
on the path failed) and which did not, by observing the resgtigrobes. We call this properpath identifiability
Note that it is not necessary for edge identifiability that thceivers infer the state of all these paths. However, this
is the maximum information that can be extracted from th&vagk to infer link loss rates, and can only increase the
reliability of the inferred estimates. Moreover, knowirptstate of the paths is particularly well suited for running
the belief propagation algorithm that we use for estimatibigeneral graphs: indeed, message-passing in the BP
algorithm is triggered by giving the state of the paths asiinpherefore, we will attempt to make the maximum
number of path states distinguishable, by appropriateseteof coding. The following example indicates how the
selection of a coding scheme can allow more or less pathsstatbe distinguishable at a receiver.

Example 3:Consider the network and edge orientation shown in Fig. & is based on a real backbone
topology (Abilene [27]) as it will be discussed in detail inader section. Node 1 acts as a source and node 9 as
a receiver; assume that all intermediate nodes are onlwadldo doxor operations.

Notice that path$; and P, overlap twice: on edgé&-, and later on edgé&y. If all links in both paths function, the

xor operations “cancel” each other out, resulting in exactly shme observation with both paths being disrupted.
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More specifically, the following two event become indistinghable: (i) all edges function: nodereceives packet
xo through edgel; and packetr; + x5 through edgefls, and sends packet; through edgeFy to the receiver;
(il) edgesE, and E; fail, while all other edges function: nodeonly receives packets; from its incoming links,
and again sends packes through edgeyy to the receiver. On the other hand, if we allow coding operetiover
a larger alphabet, as in Example 5, these two events resobserving the distinct packets @)s + x3 and (i)

3 at the receiver. O

B. Routing

First, we discuss the case where we want to estimate the &ssassociated with a specific subset of links,
and we express the corresponding optimization problem aB that can be solved in polynomial time. Then, we
examine the practical special case where we are interast@@asuring all links, and which will be the main focus
of the rest of the section.

1) Minimum Cost Routing: Consider an arbitrary network topology, a given &ebf nodes that can act as
sources, a given sé® of nodes that can act as receivers, and aZsef edges whose link loss rate we want to
estimate. Our goal is to estimate the loss-probability fblimks in Z at the minimum bandwidth cost. That is,
we assume that a coét(e) is associated with each edgethat is proportional to the flow through the edge. We
are interested in identifying the loss raig of edgee € Z. Let thep be the rate of probes crossing that edge, in a
manner consistent with the identifiability conditions falge e.

RemarksWe note that the flow-based formulation of this problem doatsrely on any major assumption. The
accuracy of estimation depends only on the number of probdsnat on the rate of the probe flows. The rates
determine how quickly those N packets will be collectedy., for smaller rates, it will take longer to collect the
N packets. We also note that that having flows coded togetharddge does not reduce the estimation accuracy.
In fact, a coded packet observes more than paths, thus gilcgethe estimation accuracy vs. bandwidth tradeoff.

The minimum cost routing problem was shown to be NP-hard nwdeeforming tomography with multicast trees
[28]. Indeed, the problem of even finding a single minimunt &teiner tree is NP-hard. In contrast, we show here
that if we use network coding, we can find the minimum costinguin polynomial time. In the case of network
coding, to ensure identifiability, we want to route flows sattthe conditions in Theorem 4.1 are satisfied. We will
consider the flow-interpretation of paths in Theorem 46, we will think of each path as a flow of fixed rate
To ensure minimum cost, we want these flows to use the minimagources possible.

Below we provide a Linear Programming (LP) formulation thlidws to solve the minimum cost cover problem
in polynomial time, provided that we allow intermediate Bedo combine probes. We assume that there are no
capacity constraints on the edges of the netwagk, we can utilize each edge as much as we want. This is a
realistic assumption, since the rateat which we send probe packets would be chosen to be a very sawion
of the network capacity, and nowhere close to consuming th@evcapacity.

Intuition. Following an approach similar to [29], we introduce concaptflows that can share a link without

contending for the link capacity. We associate with eacthsdgee; € Z one such conceptual flow. We would
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like eachf? to bring probe packets to link; = u;v; € Z in a manner consistent with the conditions of Theorem 4.1
for edgee;. We allow conceptual flows corresponding to different edget share edges of the graph without
contention, and will measure through a total flgwthe utilization of edges by probe packets. We use the camditi
fi < f to express the fact that each packetfimight be the linear combination of several packets of conep
flows.

Notation.Let C': E — R* be our cost function that associates a non-negative@¢st with each edge. We
are interested in minimizing the total cdst, C(e) f(e), wheref(e) is the flow through edge. We also denote by
fin(v)/ four(v) the total incoming/outgoing flow of vertex and with f;,,(e)/ fou:(e) the total incoming/outgoing
flow to edgee. The same notation but with the supersciipe.g. f;, (v) has the same meaning but specifically for
conceptual flowf?. We connect all nodes if = {S;} to a common source nodethrough a set of infinite-capacity
and zero-cost edgeBs = {SS;}. Similarly, we connect the nodes iR = {R;} to a common nod& using an
infinite-capacity and zero-cost set of edgés = {R;,R}.

We summarize the LP program for Minimum Cost Routing below:

min Z Cle)f(e)

fle)<p VeeE—-Eg—Epg

fle)=p VeeZ

Each conceptual flow? corresponding te; = u;v; satisfies the constraints:
fi(e) < f(e) Ve€ E —e;

fi(e) >0 VeeE

fin(8) =0

four(R) =0

f'LZn(u) :fg’ut(u) VUEV—{S7R7UZ‘7’UZ‘}

f,fn(ui) >p /*conceptual flow of rate at leagt gets into(w;, v;)*/
Sl (i) + four(ui) > 3p
ff;ut(vi) >p /* conceptual flow of rate at leagt gets out of(u;, v;)*/

f'LZn(U’L) + fg’ut(vi) > 3p

The idea is to lower-bound the probe rdte ), in edgee, given the conceptual flows and the conditjiie) < f(e).
Solving this LP will give us a set of flows and paths, for eachgeeth e = (u;,v;). To ensure identifiability, we
need to additionally select a coding scheme, so that, thesfltiving and leaving at;; and v; utilize distinct
packets, i.e., from the observable events at the sink, wae@onstruct for edge the probability of the events of
one of cases 1-4 in identifiability.

In summary, the minimum cost routing problem, so as to idieritie loss rates of a predefined set of edges
Z, can be solved in linear complexity when network coding isdysvhile the same problem is NP-hard without

network coding.
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2) Routing (including Source Selection and Link Orientation)for Measuring all Links : If we are interested
in estimating the loss rate afl identifiable edges of the graph, as opposed to just a rexirsettZ as in the previous
section, we do not need to solve the above LP. We can simply dagh source send a probe and each intermediate
node forward a combination of its incoming packets to itsgoirig edges. This simple scheme utilizes each edge
of the graph exactly once per time slot (set of probes senhbysburces) and thus requires the minimum total
bandwidth. Moreover, if an edge is identifiable there exiéstsoding scheme that allows it be so. Example 3 and
Fig. 10 demonstrate such a situation: the source (node Hsseme probe per experiment, which gets routed and
coded inside the network, crossing each link exactly onod,eventually arriving at the receiver (node 9).

Challenge I: Cycles.One novel challenge we face in general topologies comparékés is that probes may
be trapped in cycles. Indeed, if network nodes simply comlireir incoming packets and forward them towards
their outgoing links, in a distributed manner and withouti@bgl view of the network, then probes may get trapped
in a positive feedback loop (cycle) that consumes netwoskueces without aiding the estimation process. The
following example illustrates such a situation.

Example 4:Consider again the network shown in Fig. 10, but now assumethie orientation of edgek, and
Eg were reversed. Thus edgés, Fs5, F;, and Eg create a cycle between nod&gs4, 5, and3. The probe packets
injected by nodes and2 would not exit this loop. O

To address this problem, we could potentially equip intatiaie nodes with additional functionalities, such as
removal of packets that have already visited the same ndus.iJ not practical because it requires keeping state
at intermediate nodes; furthermore, such operations woeétl to be repeated for every set of probes, leading to
increased processing and complexity.

We take a different approach: we remove cycles. Starting)fem undirected graply = (V, E), where the
degree of each node is either one (leaves) or at least thregrfiediate nodes), we impose an orientation on the
edges of the graph so as to produce a directed acyclic gra@B@)BDur approach is only possible if we are given
some flexibility to choose nodes that can act as sources eivezs of probe packets, among all nodes, or among
a candidate set of candidate nodes.

There are many algorithms one can use to produce a DAG. Belewrapose our own orientation algorithm,
Alg. 3 that, in addition to removing cycles, it also achiegese goals related to our problem. In particular, starting
from a set of nodes that act as sendgrs V, Alg. 3 selects an orientation of the graph and a set of recgjso
that (i) the resulting graph is acyclic, (i) a small numbémreceiver nodes is selected which is desired for the
efficient data collection and (iii) the resulting DAG leadsa factor graph that works well with belief propagation
estimation algorithms. Alg. 3 algorithm guarantees idatiility but is heuristic with respect to criteria (ii) and
(iii); it is important to note, however, that optimizing fariterion (iii) is an open research problem (as discussed
in Section VI-D).

11Given a set of sources, one can always produce an orientatidna set of receivers that comprise a DAG, which is what Alglo8s.
Conversely, given a set of receivers one can always producgi@entation and a set of sources that comprise a DAG. If badrsets of sources

and receivers are fixed, a DAG may not always exist, depenaliinthe topology.
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Algorithm 3 Orientation Algorithm: Given graphG = (V, E) and sender$ C V, find receiversR C V and

orientation¥ e € F, s.t. there are no cycles and all edges are identifiable.
1: for all undirected edges = (s,v2), s € .S do

2:  Set outgoing orientation — w5

3: end for

4. R = {s € S that have incoming oriented edggs

5 V1 =25,

6: Vo ={ve € V =V :s.t. T edge (v1,v2) from vy € V1}

7: while V5 #£ 0 do

8: Ildentify and exclude receivers: finde V; without unset edges® := R|J{r}; Vo := V2 — {r}
9: Find noded/; C V5 that have the smallest number of edges with unset orientatio

10:  Find nodesU> C U; that have the minimum distance from the sourSeshoose one of themi* € Us.
1. LetE*={(v,w)e EstweV -V}

12:  for all undirected edge&*,w) € E* do

13: set direction tow* — w

14:  end for

15 UpdateV; := V; Y{v*}

16:  Updatels :={ (non¥3) nodes one edge away from currént}

17: end while

We now describe Alg. 3. We sequentially visit the verticegtaf graph, starting from the source, and selecting
an orientation for all edges of the visited vertex. This ot@&ion can be thought as imposing a partial order on the
vertices of the graph: in a sense, no vertex is visited bedtiri,s parent vertices in the final directed graph.

Lines 1 — 3 attempt to set all links attached to the sources as outgdinge allow an arbitrary selection of
sources we may fall into cases where sources contain linkshier sources. In this case, one of the sources will
also need to act as a receiver, i.e., we allow theSsef sources and the set of receivdtso overlap. In the main
part of the algorithm nodes are divided in three sets:

« A set of nodesl; which we have already visited and have already assignedtatien to all their attached

edges. Originally/; := S.

« A set of noded/’; which are one edge away from nodeslinand are the next candidates to be addett;to

« The remaining nodes are either receiv&®r just nodes not visited yatz :=V — V; — V5 — R.

In each step of the algorithm, one nodec V5 is selected, all its edges that do not have an orientatiosetréo
outgoing, andv* is added toV; := V; | J{v*}. Notice that the orientation of edges going frdmto V% is already
set. However, a node € V, may have additional unset edges; if it does not have unsetsedgen it becomes a

receiverR := R|J{v}.
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We include two heuristic criteria in the choice of € V5: (i) first we look at nodes with the smallest number
of unset edges; (ii) if there are many such nodes, then we flookhe node with the shortest distance from the
sourcessS; if there are still many such nodes, we pick one of them at @andThe rationale behind criterion (i)
is to avoid creating too many receivers. The rationale kgklniterion (ii) is to create a set of paths from sources
to receivers with roughly the same path length. The critéjiand (ii) are just optimizations that can affect the
estimation performanéé The algorithm continues until all nodes are assigned tweeiR or V;.

Lemma 6.1:Algorithm 3 produces an acyclic orientation.

Proof: At each step, a node is selected and all its edges which doawet & direction are set as outgoing. This
sequence of selected nodes constitutes a topologicaliogdéit any point of the algorithm, there are directed paths
from nodes considered earlier to nodes considered lateycke evould exist if and only if for some nodes and

v;: v; is selected at steps > ¢ and the direction on the undirected ed@e, v;) is set tov; < v;. This is not
possible since if there were an ed@e, v;) it would have been set at the earlier stept the opposite direction
v; — v;j. Therefore the resulting directed graph has no cycle. lpbssible, however, that there are nodes with no
outgoing edges, which become the receivers. [ ]

We note that the key point that enables us to create an aay@dintation graph for an undirected graph is that
we allow the receivers to be one of the outputs of the algaritNotice that a similar algorithm can be formulated
for the symmetric problem, where the receivdtsare given and the orientation algorithm produces a (reyerse
orientation and a set of sourcés s.t. that there are no cycles. However, if béthand R are fixed, there is no
orientation algorithm that guarantees the lack of cyclesafbgraphs.

Lemma 6.2:Algorithm 3 guarantees identifiability of every link in a g&al undirected graph consisting of
logical links (i.e. with degree> 3) and for any choice of sources.

Proof: The proof follows directly from the fact that the degree ofleaode is greater or equal to three (assuming
logical links only), each edge bringing or removing the saam®unt of flow. Thus, either the node is a source or

receiver, or the conditions of Theorem 4.1 and Fig. 3 aresfiadi. ]

C. Code Design

Challenge II: Code Design affects Identifiability. Another novel challenge that we face in general topologies
compared to trees is that simpt@r operations do not guarantee path identifiability, as we sanxiample 3. We
deal with this challenge using linear operations over hidgledd sizes as the following example illustrates.

Example 5:Let us revisit the general topology shown in Fig. 10 and byidicussed in Example 3. Nodeacts
as a source: for each experiment it sends prahes:; andzs through its outgoing edgels 2 and3 respectively.
Nodes?2, 4, 6, 10 simply forward their incoming packets to all their outgoitigks. Node 3 performs coding

operations as follows: if within a predetermined time-wondit only receives probe packet, it simply forwards

120ne could use different criteria to rank the candidate so as to enforce additional desirable properties. Here sed shortest path from
the sources to impose a breath-first progression of theitigoand paths with roughly the same length. One could algoatiser criteria to
optimize for the alphabet size and/or the complexity andgperance of the estimation algorithms.
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this packet. Similarly if it only receives probe packet If however it receives both packets andzs, it linearly
combines them to create the packet+ z3 that it then sends through its outgoing edfg Nodes5, 7 and 8
follow a similar strategy. If all links are functioning, ned sends packetzs + x5, node7 sends packet; + x-
and finally node8 sends packetz; + x2. The receiver nodé observes for each experiment three incoming probe
packets. E.g., if it only observes the incoming packet it knows that all paths from the sourc¢e have failed,
apart from pathP;. Therefore, it infers that no packets were lost on edfjgsEs, Ey. O

More generally, we are interested in practical code desifpermes that allow for identifiability of all edges in
general topologies. We will achieve this goal by designiogdath identifiability, which is a different condition. In
particular, we are interested in coding schemes that alewoudentify the maximum number of path states. This
can be achieved by mapping the failure of each subset of pathsdistinct probe observed at the receivers. For
this to be possible (i) the alphabet size must be sufficidatiye and (ii) the coding coefficients must be carefully
assigned to edges.

Recall that receiver nodes only have incoming edgesekebe an edge adjacent to a receiveiand P(er) be
the set of paths that connect all source nodes to recélyemd havecr as their last edge. We say that a probe
coding scheme allows maximum path identifiability if it aill® the receivetR, by observing the received probes
from edgeer at a given experiment, to determine which of tR¢er) paths have been functioning during this
experiment and which not.

1) Alphabet SizeThere is a tradeoff between the field size and path identifiab©On one hand, we want a
small field size mainly for low computation (to do linear ogigons at intermediate nodes) and secondarily for
bandwidth efficiency (to use a few bits that can fit in a singlebe packet). In practice, the latter is not a major
problem, because for each probe we can allocate as manyshite anaximum IP packet size which is quite large
in the Internet® However, for computation purposes, it is still importanattive keep the field size as small as
possible. On the other hand, a larger field size makes easewhieve path identifiability.

For maximum path identifiability, there is the following k@ lower bound on the required alphabet size.

Lemma 6.3:Let G = (V, E) be acyclic and lef,, denote the maximum number of paths sharing an incoming
edge of any receiveR, i.e., P,,, = max., P(er). Then the alphabet size must be greater or equild®,,,.

Proof: Assume that one of th®@,, paths is functioning while all the others are not. Since twthp cannot
overlap in all edges, there exists a set of edge failures thaththis event occurs. For the receiver to determine
which of theP,, paths function and which fail, it needs to receive at le8gst distinct values. Essentially, the
field size should be large enough to allow for distinguishamgong all possible paths arriving at each receiver.
Therefore, we need an alphabet size P,,. [ ]

What the above lemma essentially counts is the number ahdistalues that we need to be to able to distinguish.

This can be achieved using either scalar network coding @¥igite field F;, of sizeg, or using vector linear coding

13The MTU (maximum transmission unit) on the Internet is astegv’5 Bytes (4800 bits) and up to 1500 bytes (1200bits)uiticly headers.
However, in simulation of realistic topologies, we did neted to use more 18 bits.
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with vectors of appropriate lengtk.g.,see in [23] for an application to the multicast scenario, ietszalar network
coding over a finite field of sizg was treated as equivalent to vector network coding over plaees of binary
vectors of lengtHog q.

The reader will immediately notice that there is an expoiaénumber of paths and failure patterns. We would
like to note that this is not unique to our work, but inheremttbmography problems that try to distinguish
between exponentially large number of configurati@ng,,transfer matrices and their failure patterns in the passive
tomography [17], [18]. Even in that case, simulations ofiéatopologies, such as Exodus, showed that a moderate
field size is sufficient in practice. However, in our case divactomography, a potentially large alphabet size is
needed only if one insists to infer the loss ratesaiinks simultaneouslyln practice, one can infer the loss rates
on links one-by-one, by carefully selecting the probes amésuring only the corresponding paths, thus creating
the 5-“link” motivating example, whergor operations are sufficient.

2) Code Design:Having a large alphabet size is necessary but not sufficeeguarantee path identifiability.
We also need to assign coefficiedis} so that the failure of every subset of paths leads to a distihservable
outcome (received probe content). Here we discusses hoel@¢otghese coefficients.

Consider a particular incoming edge, to a receiverR and letn be the number of paths arriving to this edge
from sourceS. Consider one specific paththat connects sourcg to R via edges;, , e;,, ...er. The contribution
P; from pathi to the observed probe is what we calpath monomiali.e., the product of coefficients on all edges

across the path and of probé sent by source:
Pi = Cj; * Cjy... " CR XS

For simplicity, we useP; to denote both a path and the corresponding path monomi&d. tat, each path consists
of a distinct subset of edges; as a result, no path monoméaafastor of any other path monomial. We can collect
all the monomialsP; in a column vectorﬁeR = (P, P,...P,).

If all paths arriving to edge r are working (no link fails), the received probe at that edgéhe summation of

the contributionsP = (P1, P,...P,) from all n paths:
Probe received throughyr (when no lossy P, + P + ....P,

In practice, however, any subset of thespaths may fail due to loss on some links and the received drebemes
the summation of the subset of paths that did not fail. Ket (1,2, ..xz,) be the vector indicating which paths
failed: x, = 0 if path k failed and1 otherwise. Therefore, the probe received throughin the case of loss, is
Probe received throughy (when loss)= X - P = > ag - P,
k=1
where X is the indicator vector corresponding to the loss pattem, has entry zero if a path fails, and one
otherwise. The vectoX can take2" possible values; lef(; denote the;t” possible valuej = 0,..2" — 1. to
guarantee identifiability, no two subsets;j of failed paths should lead to the same observed prabeP # X - P.
Therefore, a successful code design should leaf tdistinct probes, one corresponding to a different subset of

paths failing. In other words, to guarantee identifiahilitye coefficients{c.}.cr assigned to edgeE should be

May 24, 2010 DRAFT



35

such that:X; - P— X; - P #£0, Vi,j = 0,..2"~! We can write all these constraints together as one:
[I & P,-X; P, #0 (16)
i,j=0,...27—1

Since eachP; = ¢;, - ¢;,... - ¢cg - Xs is @ monomial, with variables the coding coefficiefits }.c g, the left hand
side in Eq.(16) is a multivariate polynomiglci, co, ...c g)) With degree in each variable at mas 2.

Lemma 6.4:The multivariate polynomiaf (ci, cz, ...cg|) at the left of Eq.(16) is not identically zero.

Proof: The “grand” polynomial is not identically zero because efadtor in the produc@)i-ﬁeR —)fj ~]36R) is

a nonzero polynomial if¢; }. Indeed  X; and)fj differ in at least one position, say corresponding to a monomial
P,.. Consider the following assignment for the variab{es}. Assign to all the variables in this monomial a value
equal to one. Assign to al other variables} a value of zero. Since no monomial is a factor of any other muab
this implies that the vectoﬁR takes value one at positiohy, and zero everywhere else. Thus, this assignment
results in a non-zero evaluation for the polynontial; - P., — X; - P.,,), and, as a result, this cannot be identically
zero. ]

Up to now, we have considered paths that employ the same ingoetlge. We can repeat exactly the same
procedure for all incoming edges, and generate, for eadnesige, a polynomial in the variablgs; }. Alternatively,
we could also find these polynomials by calculating the fiem®atrix between the sources and the specific receiver
node using the state-space representation of the netwarkhanalgebraic tools developed in [30]. Either way, the
code design consists of finding values for the variajle$ so that the product of all polynomialg, evaluates to a
nonzero value. There are several different ways to find sastygaments, extensively studied in the network coding
literature,e.g.,[31]-[33]. One way to select the coefficients is randomlyd &mis is the approach we follow in the
simulations. In that case, it is well-known that we can mdie probability thatf(ci, ¢z, ...cjg|) = 0 arbitrarily
small, by selecting the coefficients randomly over a largeugh field*.

Deterministic Operation. We emphasize that although the selection of coefficients beagelected randomly
(at setup time), the operation of intermediate nodes (attime) is deterministic. At setup time, we select the
coefficients and we verify the identifiability conditiong)ichselect new coefficients if needed for the conditions to
be met. After the selection is finalized, we learn the coeffits and use the same ones at each time slot. Learning
the coefficients is important in order to be able to infer ttetesof the paths and links.

State Table and Complexity IssuesOnce the coefficients are randomly selected, we need to chieether the
constraints summarized in Eq.(16) are indeed satisfielelf are satisfied, the code design guarantees identifjabilit
if they are not satisfied, then we can make another randomt&eieand check again. One could also start from a
small field size and increase it after a number of failed grial

The evaluation of Eq.(16) above requires to check an exg@eumber of constraints, up 2" where n is the

number of paths for a triplet (source, receiver, edge ativege Because the current orientation algorithm does not

14From the Schwartz-Zippel Lemma [31], which has been insemtal for network coding [33], we know the following. fi(c1, c2, ClE|)
is a non-trivially zero polynomial with degree at masin each variable, and we chooge. }.c z) uniformly at random inF,; with ¢ > d,
then the probability thaf(c1, cz, ...cjg|) = 0 is at mostl — (1 — g)‘E‘.
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Algorithm 4 Deduce State of the Paths from Observations
for all S € Senders do

for all R € Receivers do
for all incoming links Er do
Map the observed probe to the state of all paths ftonno R coming through linker
end for
end for

end for

exclude any edges in the process of building the DAG, we mégitt up with a large number of paths depending
on the connectivity of the topology and the selection of therses®. This motivated us to look into more practical
approaché$. Even putting aside the exponential number of paths, for mem, the problem is essentially a subset
sum: we receive a symbol at a receiver and we would like to kwihweh combinations of non-failed paths add up
to this number. This is a well-known NP-hard problem.

This being said, we do not expect this to be a source of highptexity in practice for several reasons. First, the
algorithm that maps the received symbol to a state of pathdearun offline and the table can be computed and
stored. All we need to do every time we receive a symbol is gutdble lookup, which is inexpensive (O(1)). In
other words, we incur setup complexity once in the begintingnot during run time. Second, this design is only
necessary if one wants to infail links at the same time, which may be an overkill in practicke Thost typical
use of our framework in practice will be for inferring the $osates of a few congested specific links of intérest
In that case, we do not need to keep track of the state of dilspltg., if we just want to infer the loss rate of a

single link, we only need a basic 5-link topology, which fesin a small table .

D. Loss Estimation using Belief Propagation

For our approach to be useful in practice, we need to emplayacbmplexity algorithm that allows to quickly

estimate the loss rate on every link from all the observatiah the receiver. Because MLE is quite involved

15 g., for the Abilene topology shown in Fig. 10, with 1 soyrtleere were at most three paths ger, S, R) triplet, but for the larger
Exodus topology (described in Section VI-E) with 5 sourdhs, average and maximum number of paths per triplet vasd 25 respectively
(for a specific selections of sources in both topologies).

16For example, if we are willing to accept less than 100% patintifiability, we can randomly assign coefficients. withatiecking for
identifiability conditions. From the observed probes at itheeivers, we then infer the subset of paths that failed bkitg up a table which
is pre-computed by solving a subset sum problem. If we iflemthe or more subsets of paths that when failing lead to timeesabserved
probe, we can use a heuristic, i.e. pick one of the candidatsess, their union or intersection. We then feed the sththeopaths to the BP
estimation algorithm. This is the approach we follow in thrawdation section.

1"This is a well-known fact in the tomography literature, ahisioften exploited to set the loss rates of uncongesteds linkzero and thus
reduce the number of unknowns and improve the identifigbilit
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Fig. 11. Factor graph corresponding to the Abilene graplovishin Fig.10). It maps the 15 links to the 7 observable paththe single
receiver (9). It is used for the belief propagation estioratalgorithm.

for general graphs, especially large ones, we use a subalpdilgorithm instead; in particular, we use the Belief
Propagation (BP) approach that we also used for trees, stiers&-D.5.

There are two steps involved in the algorithm for each roungceived probes. First, from the observations we
need to deduce the state of the paths traversed by thesespesbdescribed in Algorithm 4. The second step is to
use the Belief-Propagation (BP) algorithm, to approxinMeximum Likelihood (ML) estimation. Once we know
which paths work and which failed in this round, we feed tm#imation into the factor graph, which triggers
iterations and leads to the estimate of the loss rate. Sigila trees, the factor graph is again a bipartite graph,
between links and paths containing these paths. For exafjgle11 shows the bipartite graph corresponding to
the Abilene topology of Fig. 10, which we have been discugsginall the examples in this section.

The main difference in the general graphs compared to thes tie that there are multiple (instead of exactly
one) paths between a source and a receiver and has two itigpigalhe first implication is that the design of the
coding scheme must allow to deduce the state of these naufiths between a source, receiver and an incoming
edge at the receiveiS, R, er); this has been extensively discussed in the previous sectiocode design. The
second implication is that there are more cycles in the faptaph of a general graph, which affects the estimation
accuracy of the BP algorithm.

In general, the performance of the BP algorithm depends eptbperties of the factor graph. Several problems
have been identified in the BP literature depending on thstexte of cycles, the ratio of factors vs. variables
(e.g. links per path) and other structural properties (j@tupsets, trapping sets, diameter). Fixing such BP-spgecifi
problems are outside the scope of this paper and is a reskguicton its own. However, we did address two of the
aforementioned problems, using existing proposals froemBP literature. First, for performance enhancement in
the presence of cycles in the factor graph, we used a modtiicaf the standard BP, similar to what was proposed

in the context of error correcting codes [34]. The idea isstadmbat the overestimation of beliefs by introducing a
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multiplicative correction facton: < 1 for messages passing between variables (links) and fagtatiss§®. Second,

we design the orientation algorithm to traverse the actopblbgy in a breadth-first manner in order to produce
short paths and thus small ratio of links per path in the fagtaph, which has a good effect on the BP performance.
More generally, we note that the properties of the factoplgrdepend on the orientation algorithm. One could
optimize the orientation algorithm to achieve desired prtips of the factor graph. In this paper, we have not done
modifications other than the two mentioned above becausleg(ipverall estimation worked well in all the practical
cases we tried and (ii) the design of a factor graph for b&fperformance is a research topic on its own and

outside the scope of this work.

E. Simulation Results

We now present extensive simulation results over two rialispologies.

1) Network TopologiesWe used two realistic topologies for our simulation, nambly backbones of Abilene
and Exodus shown in Fig. 12. Abilene is a high-speed reseasthork operating in the US and information about
its backbone is available online [27]. Exodus is a large cenumal ISP, whose backbone map was inferred by the
Rocketfuel project [37]. Both topologies were pre-proeest® create logical topologies that have degree at least 3.
For Exodus, nodes with degr@ewere merged to create a logical link between the neighbothasfe nodes while
nodes with degree 1 were filtered; the resulting logical logy contains48 nodes and 05 links. For the Abilene
topology, due to its small size, in addition to some linksandem merged, more links were added; the modified
topology comprises of0 nodes and5 links, and is the one shown in Fig. 10 and used as an examplgenheral
topology throughout this section VI.

For all simulations the link losses on different links areuased independent, and may take large values as they
reflect losses on logical links, comprising of cascades ofsigal links, as well as events related to congestion
control within the network.

2) Results on the Orientation Algorithnin Fig. 13, we consider the Exodus topology and we run thentat@n
algorithm for all possible placements of one and two soywescall each placement an “instance”. We are interested
in the following properties of the orientation produced bigA3:

« the number of receivers: a small number allows for localemibn of probes and easier coordination.

« the number of distinct paths per receiver: this relates ¢éoaliphabet size and it is also desired to be small.

« the number of paths per link and links per path: these affecperformance of the belief propagation algorithm.
Fig. 13 shows the above four metrics, sorting the instanassifi increasing number of receivers and then in

increasing paths/receiver. The following observations loa made. First, the number of receivers produced by our

18In the same way, we could also use an additive correctiomrfacstead. Making those factors adaptive could give evétebeesults. In the
same paper [34], additional modifications of the factor gr§pnction tree algorithm, and generalized belief propaga to deal with cycles
have been proposed, which we did not implement in this paptrer possible modifications of the BP include: [35], a nstétje iterative
decoding algorithm that combines belief propagation wittleoed statistic decoding reaches close to the performahbtLE although with a
higher complexity than BP; and [36], which uses a probailischedule for message passing between variable nodeshacf nodes in the

factor graph instead of simple message flooding at everstidter.
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Fig. 12. Topologies used in simulation. (a) Top: Abilene IBame Topology (small research network). (b) Bottom: Exo&@©DP Topology
(large ISP).
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Fig. 13. Running the Orientation Algorithm on the Exodusdlogy.

orientation algorithm is indeed very small, as desired.o8dcthe number of links per path is almost constant,
because by construction the orientation algorithm triebdtance the paths lengths. Third, the paths/receiver and
paths/link metrics, which affect the alphabet size the iualf the estimation can be quite high; however, they
decrease by orders of magnitude for configurations with arfmeivers; therefore, such configurations should be
chosen in practice. Finally, Table Ill considers differehbices of sources in the (modified) Abilene and Exodus

topologies and shows some properties of the produced atient
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Topology | Srcs-Recvs Coding | Links/ | Paths /| Edge Disj.
Points Path Link Paths

Abilene {1}-{9} 4 3.85 1.8 3
{5}-{6} 4 3.71 1.73 3
{9}-{2} 4 4.28 2.0 2
{1,9-{7} 5 3.25 1.73 4
{3,6}-{9} 5 4 2.13 4
{9,6}-{4} 5 3.25 1.73 4
{1,5,9-{7} 5 3.2 2.13 5
{1,4,10-{9} 6 3 2.33 6

Exodus {39,45-{30,40} | 25 9.47 56.47 4

TABLE Il

PROPERTIES OF THE ORIENTATION GRAPHS PRODUCED BALG. 3 FOR DIFFERENT TOPOLOGIES AND CHOICES OF SOURCES

3) Evaluation of Random Code Design for Real Topologiesthis section, we simulateandom code design
schemedgor the example topologies of Abilene and Exodus.

Consider a particular incoming edge, to a receiverR and letn be the number of paths arriving to this edge

from the same sourcg. If two subsets of paths lead to the same probe, then theyndigtinguishable which leads
to loss of identifiability. In practise, since many of the Ipafor a triplet(eg, .S, R) share links between them, we
have much less tha2" possible distinct probes. The exact number depends on theectivity of the topology.
In the simulations, the content of the probe from each subk@aths is used as a key to a hash table. If two
subsets lead to the same probe, then they will end up intoatme $ucket. The number of unique buckets into the
hash table gives us the number of different combinationsadéd/non-failed paths that are distinguishable from
each other. We normalize this number by the total number eS$ipte distinct subsets and we call this number the
probability of success (path identifiability) of the codesidm for this particular tripleteg, S, R).

For the Abilene topology(10 nodes, 15 links), using one source and the orientatigarighm, we obtained a
DAG with one receiver (Fig.10). The maximum number of pathsavved for an incoming edge at the receiver was
3. A random choice of coding coefficients over a finite field iae2° was sufficient to achieve 100% identifiability
of all paths on all edges.

For theExodus topology48 nodes, 15 links), we select 5 sources, apply the orientatgorithm and get three
receivers. Fig.14 shows the distribution of the number dhgdor all triplets(eg, S, R). There are 16 incoming
edges to all three receivers, 44 tripléts;, S, R) and 377 paths from the sources to the receivers in totallehiss
to 9 paths on average and 25 paths maximum per triplgt S, R). We visit all nodes in random order and we
assign coefficients from a finite field with increasing si2& (— 218).

In Fig.15, we show the probability of success with regardgdth identifiability for five such tripletéeg, S, R),
with 7, 9, 13, 20 and 25 number of paths respectively. Theesmhre averaged over 5 different runs for each field
size value. When we use random code selection over a fieldzeR$t or larger, we get good results: for a field

size2'® or higher we get almost 100% success for all triplets. Thesegaod results for a large realistic topology,
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Fig. 15. Random code design for the Exodus topology. The iX-altows the size over which over which we choose randomlyctiting
coefficients: finite fields with different size"§s — F,1s). The Y-axis shows the effect on path identifiability (prblity of success, defined as

the % of paths in a triple{S, R, er) that we can uniquely distinguish from the observed outcome)

such as Exodus, since almost 100% success is achieved with lass bits than the 1500bytes of an IP packet.
Random assignment of coefficients over a set of prime nunibads to success probability above 98% when we
use up to prime 907 and field si2é® for the linear operations.

4) Results on Belief-Propagation (BP) Inferendéhis section presents results on the quality of the BP etitima
for different assignments of loss rates to the links of the tensidered topologies.

In Fig. 16, we consider the Abilene topology with loss ratesersely proportional to the bandwidth of the actual
link; the intuition for this assignement is that links witigh bandwidth are less likely to be congested. We see that
the estimation error for each link (MSE) and for all links (ENdecreases quickly. In Fig. 17 the same topology
is considered but with the sameon all links: again ENT decreases with the number of probesxpected, the
larger theq, the slower the convergence; there is not a big differentedsn having one or two sources in this
case. Fig. 18 shows the estimation error ENT for the Exodpslogy with uniformly loss rates. Finally, Table IV
shows the results for different number and placement ofcesuin the (modified) Abilene topology. Unlike Fig. 17,
Table IV shows that the choice of sources matters and thatasing the number of sources helps in decreasing
ENT.
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Entropy for loss rate same over all links
Sres-Revs | @=0.05 || a=0.10 | a=0.15| a=0.2 | a=0.25 | a=0.30

{1}-{9} -178.6 || -158.8 | -147.9 | -147.7 | -161.6 | -163.5
{5}-{6} -178.1 || -158.3 | -149.6 | -154.5 | -160.4 | -156.5
{9}-{2} -176.1 || -163.3 | -155.8 | -161.2 | -166.6 | -151.7
{1,9-{7} -189.3 || -173.9 | -166.5 | -180.3 | -171.7 | -156.2
{3,6}-{9} -186.2 || -176.2 | -171.3 | -177.8 | -166.7 | -151.4
{9,6}-{4} -186.9 || -174.1 | -169.5 | -178.7 | -173.2 | -165.4
{159-{7} | -199.8 || -190.6 | -180.9 | -184.4 | -172.3 | -166.9
{1,4,10-{9} | -186.4 || -183.9 | -178.3 | -182.3 | -177.3 | -173.2
TABLE TV

QUALITY OF ESTIMATION FOR THE (MODIFIED) ABILENE TOPOLOGY AND FOR DIFFERENT CHOICES OF SOURCE).

5) NC-Tomography vs. Multicast Tomographye finally compare the network-coding approach to tradélon
multicast tomography for general topologies [3]. In thaditianal approach, multiple multicast trees are used to
cover the general topology, and the estimates from therdiftetrees are combined into one, using approaches
proposed in [3].

Fig. 19(a) shows the topology we used to the comparison, twhictaken from [3]: Nodeg0,1,2,5} are
sources, node$12,...19} are receivers and all remaining nodes (shown as boxes) tmeniediate nodes. When
the traditional approach is used, probes are sent from eatie dour source to all receivers using a multicast tree,
an estimate is computed from every tree, and then the foima&sts are combined into one using the minimum
variance weighted average [3]. When the network coding @ is used, the same four sources and the same
receivers are used, but probes are combined at intermethates{6, 7}. For a fair comparison, the same belief-
propagation algorithm has been used for estimation oveticast trees and using the network coding approach.
Fig.19(b) shows the performance of both schemes. We se¢hthaetwork coding approach achieves a better error
vs. number of probes tradeoff. The main benefit in this caseesofrom the fact that the network coding approach
eliminates the overlap of the multicast trees below nodesdb7a

There is of course a wealth of other tomographic technighas are not simulated here. (For example, we
could cover a general graph with unicast probes, but thisldvparform worse than using multicast probes.) The
reason is that [3] is directly comparable to our approach #m$ highlights the intuitive benefits of network
coding, everything else being equal. Network coding ideaddccalso be developed for and combined with other

tomographic approaches.

VIl. CONCLUSION

In this paper, we revisited the well-studied and hard pnobtd link loss tomography using new techniques in
networks equipped with network coding capabilities. Weedewped a novel framework for estimating the loss rates
of some or all links in this setting. We considered a singi,litrees and general topologies. We showed that

network coding capabilities can improve virtually all asfgeof loss tomography, including identifiability, routing
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(a) A simulation topology from [3]. Node§0, 1,2, 5} are sources, nodes
{12,...19} are receivers and all remaining nodes (shown as boxes) are

internal nodes.

Al links link loss rate 2=0.04

-120

-140 1

-160

0 200 400 600 800 1000
#Probes

(b) Performance of tomography: error (ENT) vs. number obps Solid

and dashed lines correspond to

Fig. 19. Comparison of network coding approach to tradéictomography. In both cases the same sources and receneersed. In the
traditional case, four multicast trees are used and thenatds are combined using methods from [3]. In the networkngodase, probes are

combined wherever they meet in the network (nodes 6 and 7).

complexity and the tradeoff between estimation accuradylmandwidth overhead.
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APPENDIXA: RELATION BETWEEN THEMLE OF THE5-LINK TOPOLOGY AND THE MLE OF THE REDUCED

3-LINK MULTICAST TREE

This appendix completes the proof of Theorem 4.2.

A.1 The log-likelihood functions for the two topologies

Consider Fig. 2 (a) and (b), which show the reductions betvike 5-link and the 3-link multicast. Also consider
Table I, which shows the observations and their correspanpliobabilities, in both topologies. The union of many
disjoint events in the original 5-link topology results insagle observation in the multicast tree. For example,
observation(0, 1) in the reduced multicast tree means that E receiving nothimd) F receiving any symbol(,
x9 O x1 + x2), Which happens w.pP(01) = p; + p2 + ps. For brevity, we will use the following notation in this
appendixiaac = a1, e = @z, 0cp = a3,app = g, app = a5 anda = (aq,...as).

The log-likelihood function of the 5-link original topolggs

=9
Lo, az, a3, a4, 05) = Zm -logpi(a) (17)
=0

where the probability;(«) of each event can be written explicitly as a function aef:

po= 1=pi—..—=pyg=1-(1-aa)(l-a3)(l—aas) (18)
p1 = (1 - a1)as(l — az)as(l — as) (19)
p2 = ar(1 - az)(1 - ag)au(l — as) (20)
Ps = (1 —a1)(l = a2)(1 - az)as(l - as) (21)

(22)
Po = (1= a1)(1 = az)(1 = az)(1 - as)(1 — a3) (23)
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The MLE is a solution of the system of the following five eqoas:

Fo. = 0P =105 (24)

The log-likelihood function of the 3-link multicast top@y is
L™ (aapep, o, ab) = noologP(00) + no1logP(01) 4+ niglogP(10) 4+ nq11logP(11) (25)

wherengy = ng, ng1 = n1 +no +nz, nig = N4 +ns + ng, n11 = N7 +ng + ng, and the corresponding probabilities

are eventually also functions of:

Poo =po = - =ag + (1 —ag)(an0 + asas — aragaus) = dipep + (1 — afpop)oucs  (26)
Poi=p1+p2+p3= - -=(1-—oa)(l—a3)ou(l —as) = (1 —aYgep)a(l —as) (27)
Pio =ps+ps+ps = - =(1-aipcp)(l —as)as (28)
Piy=pr+ps+po= - =(1-alpep)l—as)(l —as) (29)

where we used the following definition to simplify the exmiess:

1—aipop = (1 — o) - (1 - as) (30)

The MLE for the multicast tree is a solution of the system @& tbllowing three equations:

OL™ OL™ oOL™
Oay 0 das 0 daapcep 0 (1)

A.2. The same values aof;, a5 maximize bothl, and L™

Our first goal is to show that solving system (31), or solving system (24), leads to the same valuea.givs.
Let us first consider the log-likelihood functidn of the 5-link topology shown in Eq.(17). An inspection of the
probabilities of the events in Eq.(18-23) reveals that tegvdtives w.r.t toy, are non-zero only over one term per

event, which contains either, or (1 — as):

OL  Ologp,®
= 2% Z

G daug i=1,2,3 04 i=4...9
nyg- (1l —oajag)(l —ag)as ni+ns+n ng +..n
_ o ( 1a2)( 3) Lm 2 3 9 (32)
Do (7] 1—ay
Similarly,
OL  Ologpy® 0 . 0 .
== 4 —logal}t + —log(1 — a5)™
Oas Oas i:425.6 Oas o i=1 grs g 005 o g
~no- (1 —ara2)(1 —az)ay n ng+ns+ng  ni+ng+ng+ny+nsg+ng (33)

Do Qs 1—-as
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and

OL ng+ns+n ni+ns+n ny+ng+n ng - ao(l —a3)(l —aya

oL 6, M 2 3 N7+ ng 9, Mo 2( 3)( 1055) (34)
80&1 1—0&1 a1 1—0[1 Po
8_L7n1—|—n2+n3_n4—|—n5+n6_n7—|—ng—|—n9+no~ al(l—ag)(l—a4a5) (35)
80(2 - (65 1—(12 1—042 Po

oL ni+ne+..+n no- (1 —ajae)(l — aya

oL m 2 9, Mo ( 102)( 1055) (36)
80&3 1—0[3 Po

Let us now focus on the log-likelihood functidi™ of the 3-link multicast, shown in Eq.(25). By inspecting the

probabilities of the event$§00,01, 10,11} in Eq.(26-29), we can calculate the derivatives:

oLm ot + 10 +nu | neo - (1— asa
L™ mou o fn oo (1— asos) (37)
0 sop 1 —aapep Poo
L™ (1—a 5
_ Moo (1 —aipeplas 4o Mo M (38)
day Poo ar l-ag l-a
oL™ ngo - (1 — ' « n n n
_ Moo ( ABCD)4 4o o Pl (39)
Oas Doo l—as  aq  1-oy

Recall that by the construction of the multicast tree andiiservations we haveigy = ng,ng1 = n1 + no +
n3,N10 = N4 + N5 + N, N11 = N7 +ng +ng, 1 —agep = (1 — a1 -az) - (1 — ag), andpy = poo. Then, we can
see that equations (34,35,36,32,33) are a subset of eqsig88, 39, 37):

o Setting ;2L = 0 in Eq.(37) is equivalent to setting™ = 0 Eq.(36) divided byl — a2, which is# 0

becausey;, as; < 1 by assumption.

- Eq.(38) and Eq.(33) are identical thus leading to the sanvatem: 4=~ = 2L — 0.

oL™ oL __ 0

« EQ.(39) and Eq.(33) are identical thus leading to the sanuaten: Sar = Do
o The additional two equations (34) and (35) in the 5-link togy allow to identify ay, as in the 5-link
topology; in contrastpy, ao are not uniquely defined in the 3-link topology, where theyoobnstraint is

l—alpep =1 —a1-az)- (1 -az).
Therefore, every solution of the system of Eq. (38, 39, 37).Evbf the multicast tree) is also a solution of
the system of Eq. (34,35,36,32,33) (MLE of the 5-link togpipand vice versa. Furthermore, both topologies are
identifiable (as established in Theorem 4.1 for the 5-lingotogy, and in [2] for the 3-link multicast treei.e.,

each has a unique solution &, 1). Therefore, we can use the valuesaafandas computed in the multicast tree,

for the 5-link topology.

A.3. Solving foras

ConsideringL, as a function of a single variabte; only, we see from Eq.(36) that:

B_L__nl +n9 + ...+ N9 n ng - (1—041042)(1—0(4(15) (40)
6043 N 1-— a3 1-—- (1 - 041042)(1 — Oég)(l — 044045)
62_L 7_nl—|—n2—|—...+n9 no(l—ala2)2(1—04a5)2 (41)
daz (1—az)? (1— (1 —aaz)(1 —asz)(l — agas))?
With some algebra on Eq.(41), we can see that
%L 1
5 <0< it Al >0
do3 no l—a3

May 24, 2010 DRAFT



49

Received at Is link ok?
B|E|F[Ac|Bc|cp|DE]|DF
- - Multiple possible events
- |z 1 0 1 0 1
T 1 0 1 1 0
z | x 1 0 1 1 1
T - 1 1 0 * *
T - 1 1 1 0 0
z | - |z 1 1 1 0 1
Tz |z 1 1 1 1 0
z |z | x 1 1 1 1 1
TABLE V
CASE2

which is true for0 < a3 < 1. Therefore,L is concave ims. It has a unique solution that can be found by solving

aaTLg = 0. With some algebra on in Eq.(40) we find the solution to be:

1-%
(1 — 041042)(1 — 044(15)

043:1—

where N = ng + n1 + ...ng is the total number of samples. It is easy to check that tHigtisa is in the desired
rangeas € [0,1). Indeed:

az3<1l<=ng< N

i.e., not all packets are lost which was one of our assumptionss iEha standard assumption in tomography: no
inference can be made without any received probes. Also:

s >0<:>1—% < (1—(11(12)(1—(14(15)

This is asymptotically true forvg < 1: as N — oo, the percentage of packets that a@ lost approaches the

probability:

n
1-— NO — (1 — alag)(l — a3)(1 — a4a5) < (1 — 041042)(1 — 044045)

APPENDIXB: THE EFFECT OF THE NUMBER AND LOCATION OF SOURCES

This appendix provides additional details and simulatiesutts on the effect of the number and location of

sources. It extends sections and V-B and V-C.

Appendix B.1: Various configurations for the 5-link topaglog

Let us consider again the four cases shown in Fig. 3 for thie habnk topology. The first case, also shown in
Fig.1, has been discussed in length in Table | and in SectiofhB corresponding tables used for estimation in

cases 2,3 and 4 of Fig.3 are shown for completeness in Tahl&d &hd VII.
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Received at Is link ok?

B F Ac | Bc | cp | DE | DF

- Multiple possible events

T 1 0 1 0 1

T2 1 0 0 1 1

T2 0 * * 1 1

z1 D x2 1 0 1 1

1 - 1 1 0 0 1
1 - 1 1 * * 0
T T 1 1 0 1
T2 T2 1 1 0 1 1
1 | z1 D2 1 1 1 1

TABLE VI
CASE3
Received at Is link ok?

F Ac | Bc | cp | DE | DF

- Multiple possible events

T 1 0 1 0 1

T2 0 1 1 0 1

3 0 0 1 1 1

T3 * * 0 1 1

T D T2 1 1 1 0 1
r1 D x3 1 0 1 1 1
T2 O T3 0 1 1 1 1
1 D a2 B a3 1 1 1 1 1

TABLE VII
CAse4

Appendix B.2: Simulation Results for the 5-link topology

Consider again the basic 5-link topology of Fig.3 and focnsestimating the middle link CD. Here we show
that, even though with network coding links are identifiafdeall four cases, the estimation accuracy differs.

In Fig. 20 we assume that dll links havea = 0.3 and we look at the convergence of the MLE vs. number
of probes forCase 1(using network coding) and fa€ase 2(multicast probes with sourcd). Fig. 20(a) shows
the estimated value (for one loss realization). Both egstinsaconverge to the true value, with the network coding
being only slightly faster in this scenario.

In Fig.20(b) we plot the mean-squared error of the MLE @&ase 1(using network coding) and fo€ase 2
(multicast) across number of probes. For comparison, we ladso plotted the Cramer-Rao bound for li6lD,
which is consistent with the simulation results. For thisrerio,Case ldoes slightly better thafase 2but not
by a significant amount. This motivated us to exhaustivelygare all four cases in Fig. 3, for all combinations
of loss rates on thé links.

Fig. 21 plots the Cramer-Rao bound for the four cases as didmnof the link-loss probability at the middle

link. The left plot assumes that is the same for five links, while the right plot looks at the eagere the edge
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(b) All edge links have the same,;q. = 0.5.

links have fixed loss rate equal ic5. We observe thatase 1shows to achieve a lowéd S E bound. Interestingly,

the curves forCase 2(multicast) andCase 4(reverse multicast) coincide. The difference between #véopmance

of different cases is more evident in the right plot (Fig. ®)(

In Fig. 22, we systematically consider possible combimetiof loss rates on the 5 links and we show which

case estimates better the middle link. In the left figure, e&ume that all edge links have the same loss rate and

observe that for most combinations @f,,iqdie, ®edge), Case 1(shown in “+”) performs better. In the right plot,

we assume that the middle link is fixed@t p = 0.8 and thata sy = ape = as,app = apr = «,.. Considering

all combinations ¢s,..), each one of the four cases dominates for some scenariogtémesting observation is,

again, the symmetry betwed@ase 2(multicast) andCase 4(reverse multicast).

Appendix B.3: Simulation results for a 9-link example

Example 6:To illustrate these concepts we use the tree shown in Figh2Zun simulations for three cases: (1)

a multicast tree with the source at notl¢2) a multicast tree with the source at ndtlé3) two sources at nodds
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middle link has a(CD)=0.8.

case 1: case 2: diamond, case 3: square, case 4: "X case 10y case 2: c‘hamond‘ case 3;square. case 4: «
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Fig. 23. A network topology wittD links. The link orientation depicted corresponds to notlend 2 acting as sources of probes.

O

and2 and a coding point at.!°® Simulations results are reported for this 9-link topolognd more extensive for a
larger 45-link topology) in the simulations subsection VEelow we only report the intuition obtained from this
exercise. O

First, adding more than one source improves estimationjtively, this is because coding points partition the
tree into smaller multicast components. Second, the nurabeérplacement of sources matter. Third, between two
multicast trees with the same number of receivers, bettdofmeance is achieved by the tree that is more “balanced”
and has the smallest height.

Elaborating on the first observation, note that in treesh éaermediate node is a vertex cut set. For the example
of Fig. 23, node4 decomposes the tree into three components. If nbdeuld collect and produce probes, our
estimation problem would be reduced in estimating the lods rates in three smaller multicast trees: the first tree
consisting of sourc&; and receiversd?; and nodet, the second tree with sourég and receiver node$, R; and

R4 and the third tree with source nodeand receiverR,. Allowing node4 to xor incoming packets approximates

19For the configuration in Fig. 23, the probes could also gethined in node5 (e.g. depending on link delays or our design). That is,
although the choice of sources and receivers automatidaitgrmines the orientation of their adjacent links, themy rstill exist a choice of
coding points and orientation for the intermediate links.
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this functionality: observing whethdt, receives a packet that dependsagnor x5, we can conclude whether node
4 received a packet fron§; or S, respectively.

We made some empirical observations by simulating treest, IBine should select a fraction of sources to receivers
that allows to partition the tree into roughly “equal sia#@isomponents, where each subcomponent should have
at least2 — 3 receivers. (When links have similar loss rates, “size” refithe number of nodes/links. In general,
“size” should also capture how lossy the links in the subcongmt are, resulting to similar loss probabilities for the

subcomponents.) Second, one should distribute the somrceaghly “evenly” along the periphery of the network.

May 24, 2010 DRAFT



