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Abstract

Network tomography aims at inferring internal network characteristics based on measurements at the edge of the

network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links. There is a

significant body of work dedicated to this problem using multicast and/or unicast end-to-end probes. Independently,

recent advances in network coding have shown that there are several advantages from allowing intermediate nodes

to process and combine, in addition to just forward, packets. In this paper, we pose the problem of loss tomography

in networks that have network coding capabilities. We design a framework for estimating link loss rates, which

leverages network coding capabilities and we show that it improves several aspects of tomography, including the

identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency, and the complexity of

probe path selection. We discuss the cases of inferring: theloss rate of a single link; the loss rates of links on a

tree topology; or on a general topology. In the latter case, the benefits of our approach are even more pronounced

compared to standard techniques but we also face novel challenges, such as dealing with cycles and multiple paths

between sources and receivers. Overall, this work was the first to make the connection between tomography and

network coding and thus opened a new research direction.

Index Terms

Network Coding, Network Tomography, Link Loss Inference.

I. I NTRODUCTION

Distributed Internet applications often need to know information about the characteristics of the network. For

example, an overlay or peer-to-peer network may want to detect and recover from failures or degraded performance

of the underlying Internet infrastructure. A company with several geographically distributed campuses may want to

know the behavior of one or several Internet service providers (ISPs) connecting the campuses, in order to optimize

traffic engineering decisions and achieve the best end-to-end performance. To achieve this high-level goal, it is

necessary for the nodes participating in the application oroverlay to monitor Internet paths, assess and predict

their behavior, and eventually make efficient use of them by taking appropriate control and traffic engineering

decisions both at the network and at the application layers.Therefore, accurate monitoring at minimum overhead
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and complexity is of crucial importance in order to provide the input needed to take such informed decisions.

However, there is currently no incentive for ISPs to providedetailed information about their internal operation

and performance or to collaborate with other ISPs for this purpose. As a result, distributed applications usually

rely on their own end-to-end measurements between nodes they have control over, in order to infer performance

characteristics of the network.

Over the past decade, a significant research effort has been devoted to a class of monitoring problems that aim at

inferring internal network characteristics using measurements at the edge [1]. This class of problems is commonly

referred to astomographydue to its analogy to medical tomography. In this work, we areparticularly interested

in loss tomography,i.e., at inferring the loss probabilities (or loss rates) of individual links using active end-to-end

measurements [2]–[6]. The topology is assumed known and sequences of probes are sent and collected between a

set of sources and a set of receivers at the network edge. Link-level parameters, in this case loss rates of links, are

then inferred by the observations at the receivers. The bandwidth efficiency of these methods can be measured by

the number of probes needed to estimate the loss rates of interest within a desired accuracy. Despite its significance

and the research effort invested, loss tomography remains ahard problem for a number of reasons, including

complexity (of optimal probe routing and of estimation), bandwidth overhead, and identifiability (the fundamental

fact that tomography is an inverse problem and we cannot directly observe the parameters of interest). Furthermore,

there are some practical limitations such as the lack of cooperation of ISPs, the need for synchronization of sources

in some schemes, etc.

Recently, a new paradigm to routing information has emergedwith the advent of network coding [7]–[9]. The

main idea in network coding is that, if we allow intermediatenetworks to not only forward but also combine

packets, we can obtain significant benefits in terms of throughput, delay and robustness of distributed algorithms.

Our work is based on the observation that, in networks equipped with network coding capabilities, we can leverage

these capabilities to significantly improve several aspects of loss tomography. For example, with network coding,

we can combine probes from different paths into one, thus reducing the bandwidth needed to cover a general graph

and also increasing the information per packet. Furthermore, the problem of optimal probe routing, which is known

to be NP-hard, can be solved with linear complexity when network coding is used.

This paper proposes a framework for loss tomography (including mechanisms for probe routing, probe and code

design, estimation, and identifiability guarantees) in networks that already have network coding capabilities. Such

capabilities do not exist yet on the Internet today, but are available in wireless mesh networks, peer-to-peer and

overlay networks and we expect them to appear in more environments as network coding becomes more widely

adopted. We show that, in those settings, our network coding-based approach improves the following aspects of the

loss tomography problem: how many links of the network we caninfer (identifiability); the tradeoff between how

well we can infer link loss rates (estimation accuracy) and how many probes we need in order to do so (bandwidth

efficiency); how to select sources and receivers and how to route probes between them (optimal probe routing).

Overall, this is a novel application of network coding techniques to a practical networking problem, and it opens

a promising research direction.
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The structure of the paper is as follows. Section II discusses related work. Section III states the problem and

summarizes the challenges and main results. Sections IV, V and VI present in detail the framework and mechanisms

in the cases of a single link, trees and general topologies, respectively. Section VII concludes the paper.

II. RELATED WORK

Network Tomography. The term network tomography typically refers to a family of problems that aim at inferring

internal network characteristics from measurements at theedge of the network. Internal characteristics of interest may

include link-level parameters (such as loss and delay metrics) or the network topology. Another type of tomography

problems aims at inferring path-level traffic intensity (e.g. traffic matrices) from link level measurements [10]. Our

paper focuses on inferring the loss rates of internal links using active end-to-end measurements and assuming that

the topology is known. Therefore it is related to the literature on loss tomography, part of which is discussed below.

Caceres et al. considered a single multicast tree with a known topology and inferred the link loss rates from the

receivers’ observations [2]. In particular, they developed a low-complexity algorithm to compute the maximum-

likelihood estimator, by taking into account the dependencies introduced by the tree hierarchy to factorize the

likelihood function and eventually compute the MLE in a recursive way. Throughout this paper, we refer to the MLE

estimator for a multicast tree, developed in [2], as MINC, and we build on it. Bu et al. used multiple multicast trees

to cover a general topology and proposed an EM algorithm for link loss rate estimation [3]. Follow-up approaches

have been developed for unicast probes [5], [6], joint inference of topology and loss rates [4], adaptive tomography

and delay inference [11]. The above list of references is notcomprehensive. Good surveys of network tomography

can be found in [1], [12].

Active vs. Passive Tomography.Tomography can be based either on active (generating probe traffic) or on

passive (monitoring traffic flows and sampling existing traffic) measurements. Passive approaches have been most

commonly used for estimating path level information, in particular, origin-destination traffic matrices, from data

collected at various nodes of the network [10]. This approach and problem statement are well-suited for the needs

of a network provider. For the problem of inferring link lossrates, active probes are typically used and information

about individual packets received or lost is analyzed at theedge of the network. This approach is better suited for

end-users that do not have access to the network. However, there are also papers that study link loss inference by

using existing traffic flows to sample the state of the network[13], [14]. Once measurements have been collected

following either of the two methods, statistical inferencetechniques are applied to determine network characteristics

that are not directly observed.

The passive approach has the advantage that it does not impose additional burden on the network and that it

measures the actual loss experienced by real traffic. However, it must also ensure that the characteristics of the

traffic (e.g.,TCP) does not bias the sample. In the active approach, one hasmore control over designing the probes,

which can thus be optimized for efficient estimation. The downside is that we inject measurement traffic that may

increase the load of the network, may be treated differentlythan regular traffic, or may even be droppede.g.,due

to security concerns.
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Network Coding and Inference. An extensive body of work on network coding [9], [15] has emerged after

the seminal work of Ahlswede et al. [7] and Li et al. [8]. The main idea in network coding is that, if we allow

intermediate networks to not only forward but also combine packets, we can realize significant benefits in terms

of throughput, delay, and robustness of distributed algorithms. Within this large body of work, closer to ours are a

few papers that leverage the headers of network coded packets for passive inference of properties of a network. In

[16], Ho et al. showed how information contained in network codes can be used for passive inference of possible

locations of link failures or losses. In [17], Sharma et al. considered random intra-session network coding and

showed that nodes can passively infer their upstream network topology, based on the headers of the received coded

packets they observe (which play essentially the role of probes). The main idea is that the transfer matrix (i.e.,

the linear transform from the sender to the receiver) is distinct for different networks, with high probability. All

possible transfer matrices are enumerated, and matched to the observed input/output, and a large finite field is used

to ensure that all topologies remain distinguishable. An extended version of this work to erroneous networks is

provided by Yao et al. in [18], where different (ergodic or adversarial) failures lead to different transfer functions.

The approach in [17], [18] has the advantage of keeping the measurement bandwidth low (not higher than the

transmission of coefficients, which is anyway required for data transfer with network coding) and the disadvantage

of high complexity. In [19], Jafarisiavoshani et al. considered peer-to-peer systems and used subspace nesting

structures to passively identify local bottlenecks. Similarly to these papers, we leverage network coding operations

for inference; in contrast to these papers, which use the headers of network-coded packets for passive inference of

topology, we use the contents of active probes for inferenceof link loss rates.

Our Work. We were the first to make the connection between tomography and network coding capabilities. In

[20], we introduced the basic idea of leveraging network coding capabilities to improve network monitoring. In

[21], we studied link loss estimation in tree topologies. In[22], we extended the approach to general graphs. This

paper integrates ideas from these preliminary conference papers into a common framework, and extends them by

a more in-depth analysis of identifiability, routing, estimation and code design.

Our approach is active in that probes are sent/received from/to the edge of the network and observations at

the receivers are used for statistical inference. Intermediate nodes forward packets using unicast, multicast and

simple coding operations. However, the operations at the intermediate nodes need to be set-up once, fixed for all

experiments and be known for inference. Therefore, our approach requires more support from the network than

traditional tomography, for the benefit of more accurate/efficient estimation. Our methods may also be applicable to

passive tomography, where instead of sending specialized probes, one can view the coding coefficients on a network

coded packet as the “probe”, thus overloading them with bothcommunication and tomographic goals, as it is the

case in [17], [18]. In this paper, we focus exclusively on thetomographic goals by taking an active approach,i.e.,

by sending, collecting and analyzing specialized probes for tomography.
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III. PROBLEM STATEMENT

A. Model and Definitions

1) Network and Monitoring Scheme:We consider a network represented as a graphG = (V, E) whereV is the

set of nodes andE is the set of edges corresponding tological links1. We use the notatione = AB for the link e

connecting vertexA to vertexB. We assume thatG is (i) a directed graph (ii) without self-loops (iii) symmetric

(i.e. if AB ∈ E thenBA ∈ E) but (iv) in general, with different loss rates in the two directions of a link (as it is

the case on the Internet,e.g.due to different congestion levels). The topologyG = (V, E) is assumed to be known.

We assume that packet loss on a linke ∈ E is i.i.d Bernoulli with probability0 ≤ αe < 1. Losses are assumed

independent across links. Letα = {αe}, e ∈ E be the vector of the link loss probabilities23. In loss tomography,

we are interested in estimating all or a subset of the parameters inα.

A set S of S = |S| source nodes in the periphery of the network can inject probepackets, while a setR of

R = |R| receivers can collect such packets. Several problem variations in the choice of sources and receivers are

possible, and we will discuss the following in this paper: (i) the set of sources and the set of receivers are given and

fixed; (ii) a set of nodes that can act as either sources or receivers is given (and we can select among them); (ii) we

are allowed to select any node to act as a source or a receiver.We assume that intermediate nodes are equipped with

unicast, multicast and network coding capabilities. Probepackets are routed and coded inside the network following

specific paths and according to specified coding operations.The routes selected and the operations the intermediate

nodes perform are part of the design of the tomography scheme: they are chosen once at set-up time and are kept

the same throughout all experiments; all the operations of intermediate nodes are known during estimation.

In general, a probe packet is a vector ofm symbols, with each symbol being in a finite fieldFq. This includes as

special cases: scalar network coding (form = 1), operations over binary vectors (forq = 2), and more generally,

vector network coding (form > 1)4. In oneexperiment, we send probes from all sources and we collect probes at

the receivers: each sourcei ∈ S injects one probe packetxi in the network, and each receiverj ∈ R receives one

probeyj . The observations at all receiversR is a vectory = (Y1, Y2, ...YR) in the spaceΩ = FR
q . For a given set of

link loss probabilitiesα = {αe}, e ∈ E, let the probability of observationy ∈ Ω bep(y|α) = Pα((Y1, ...YR) = y).

We will refer to the probability distribution of all observations asPα.

1A logical link results from combining several consecutive physical links into a single link. This results in a a graphG where every intermediate

vertex has degree at least three. This is a standard assumption in the tomography literature, which is imposed for identifiability purposes, as

discussed after Definition 2.

2Throughout the paper, the notationα refers to the vector of all loss probabilities, andαe refers to the loss prob. of an individual edgee.

3This is clearly equivalent to inferring the success probabilities 1 − {αe}, as it is the case in many tomography papers.

4What is important is that a probe can take one ofqm possible values. We note, however, that there is an equivalence between operations

with elements in a finite field and operations with vectors of appropriate length.E.g., in [23], the multicast scenario was considered, and scalar

network coding over a finite field of size2m was used equivalently to vector network coding over the space of binary vectors of lengthm.

Thinking in terms of one of the aforementioned special casesis appropriate in special topologies, as we will seee.g, in tree and reverse tree

topologies, where scalars and binary vectors are used, respectively.
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To estimate the loss rates of links, we perform a sequence ofN independent experiments. Let the observations

(at all receivers) collected afterN experiments be(y(1);y(2); . . . ;y(N)). Let n(y) be the number of times that

observationy ∈ Ω occurred, where
∑

y∈Ω n(y) = N . The probability that a given set of observations has occurred

is:

p(y(1),y(2), . . . y(N)|α) =
∏

y∈Ω

p(y|α)n(y) (1)

It is convenient to work with the log-likelihood function, which calculates the logarithm of this probability:

L(α) =
∑

y∈Ω

n(y) log(y|α) (2)

The goal is to use the observations at the receivers, the knowledge of the network topology, and the knowledge of

routing/coding scheme to estimate the loss rates of internal links of interest. We may be interested in estimating

the loss rate on a single link, on a subset of links or on all links.

We make two assumptions, which are both realistic in practice and standard in the tomography literature:

• The probability of lossαi on a link i is not 1, i.e., αi ∈ [0, 1). This ensures that the log-likelihood function

is well-defined and differentiable.

• We perform sufficient measurements so that, each observation y ∈ Ω at the receivers occurs at least once,i.e.,

ny > 0. This ensures that no term in the log-likelihood function becomes a constant (due to a zero exponent).

Definition 1: A monitoring schemefor a given graphG refers to a set ofS source nodes, a set ofR receivers,

a set of paths that connect the sources to the receivers, the probe packets that sources send, and the operations

intermediate nodes perform on these packets.

We use the notion of link identifiability as it was defined in [2] (Theorem 3, Condition (i)):

Definition 2: A link e is calledidentifiableunder a given monitoring scheme iff:α, α′ ∈ [0, 1)|E| andPα = Pα′

implies α = α′.

To illustrate the concept, consider two consecutive linkse1 = AB and e2 = BC in a row, where nodeB has

degree 2, and is neither a source nor a receiver. These links are not identifiable, as (3) would only allow us to

identify the value of the productαe1
αe2

and thus would lead to an infinite number of solutions. This isbecause,

it is not possible to distinguish whether a packet gets dropped on link e1 or e2. Note, however, that the case of

having two links in a row is ruled out by our assumption of working on a graph with logical links (all vertices

in a the graph have degree three or greater). Another case that e1, e2 are not identifiable, and which is possible to

happen even on a graph with logical links, is when the two links are crossed by exactly the same set of paths.

Identifiability is not only a property of the network topology, but also depends on the monitoring scheme. One

of the main goals of the monitoring scheme design is to maximize the number of identifiable links. However, our

definition of identifiability does not depend on the estimator employed. Essentially, identifiability depends on the

probability distributionPα and on whether this uniquely determinesα.
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2) Estimation:The maximum likelihood estimator (MLE) identifies the parametersα̂ = {αe} that maximize the

probability of the observation:

α̂ = argmaxα log p(y|α). (3)

However, the MLE becomes computationally hard, specially for large networks. This creates the need for faster

algorithms that provide good approximate performance in practice.

To measure the per link estimation accuracy we will use the mean-squared error (MSE): MSE= E(|αe − α̂e|2).

In order to measure the estimation performance all linkse ∈ E, we need a metric that summarizes all links. We

use an entropy measureENT that captures the residual uncertainty. Since we expect thescaled estimation errors

to be asymptotically Gaussian (similar to the case in [2]), we define the quality of the estimation across all links as

ENT =
∑

e∈E

log
(
E[α̂e − αe]

2
)
, (4)

which is a shifted version of the entropy of independent Gaussian random variables with the given variances [24].

If the entire error covariance matrixR is available, then we can compute the metric asENT = log detR, which

captures also the correlations among the errors on different links. The metricENT defined above captures only

the diagonal elements ofR, i.e., the MSE for each link independently of the others.

In some cases, we will approximate the error covariance matrix R using the Fisher information matrixI. Under

mild regularity conditions (see for example Chapter 7 in [25]), the scaled asymptotic covariance matrix of the

optimal estimator is lower-bounded by the Cramer-Rao boundI−1. The Fisher information matrixI is a square

matrix with elementIp,q defined as

Ip,q({αe}) = E

[
∂

∂αp

log p({Yr}; {αe})
∂

∂αq

log p({Yr}; {αe})

]

(5)

where αp, αq are the loss probabilities of two links. In particular, under the regularity conditions, the MLE is

asymptotically efficient,i.e., it asymptotically, in sample size achieves this lower bound.

B. Subproblems

Given a certain network topology, a monitoring scheme for loss tomography can be designed by solving the

following subproblems in a sequential way.

1) Identifiability: For each linke ∈ E, derive conditions that the scheme should satisfy so that the edge is

identifiable. Whether the goal is to maximize the number of identifiable edges, or measure the link loss rate

on a particular set of edges, the identifiability conditionswill guide the routing and code design choices.

2) Routing: Select the sources and receivers of probe packets, the pathsthrough which probes are routed and the

nodes where they will be linearly combined.5 The design goals include minimizing the utilized bandwidth,

and improving the estimation accuracy, while respecting the required identifiability conditions.

5Depending on the practical constraints, such flexibility may or may not be available. If one cannot choose the source/receiver nodes and/or

routing, as it is the case in most of the tomography literature, then this step can be skipped. If one can choose some of these parameters, then

this can lead to further optimization of identifiability andestimation accuracy.
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3) Probe and Code Design:Select the contents of the probes sent by the sources and the operations performed

at intermediate nodes. The goal is to use the simplest operations and the smallest finite field, while ensuring

that the identifiability conditions are met.

4) Estimation Algorithm : This is the algorithm that processes the collected probes at the receivers and estimates

the link loss rates. The objective is low complexity with good estimation performance. There is clearly a

tradeoff between the estimation error and the measurement bandwidth.

We note that these steps arenot independent from each other. In fact, the design of routing,probe and code

design needs to be done with identifiability and estimation in mind.

C. Main Results

In this paper, we propose a monitoring scheme for loss tomography in networks that have multicast and network

coding capabilities. In Sections V and VI, we present our design for the case of trees andgeneral topologies,

respectively. We evaluate all our schemes through extensive simulation results. Below we preview the main results,

in each subproblem.

1) Identifiability: (1) We provide simple necessary and sufficient conditions for link identifiability. (2) We also

prove a structural property, which we callreversibility: if a link is identifiable under a given monitoring

scheme, it remains identifiable if we reverse the directionality of all paths and exchange the role of sources

and receivers (which we call thedual configuration).

2) Routing: (1) For a given set of sources and receivers over an arbitrarytopology, the problem of selecting a

routing that meets the identifiability conditions while minimizing the employed bandwidth is NP-hard. We

show that, when network coding is used, this problem can be solved in polynomial time. (2) Moreover,

we demonstrate that the choice of sources and receivers affects the estimation accuracy. (3) Finally, we

present heuristic orientation algorithms for general graphs, designed to achieve identifiability, small number

of receivers and high estimation accuracy.

3) Probe and Code Design:(1) In trees, we show that binary vectors sent by the sources and deterministic

code design withxor operations at intermediate nodes are sufficient. (2) In general graphs, we need to use

operations over higher finite fields. We provide bounds on therequired alphabet size, we propose and evaluate

deterministic code design.

4) Loss Estimation: (1) For the purpose of estimating a single link, we design a low-complexity method for

computing the MLE; this is a powerful building block because, in practice, one is interested in estimating

the loss rate on one or a few congested links. (2) The reversibility property allows us to relate not only the

identifiability, but also the MLE function of a configurationand its dual; a direct application is that we can use

the low-complexity MLE estimator, developed in MINC [2], specifically for a multicast tree, in the case of

reverse multicast tree, (i.e., topologies with several sources and one receiver) as well. (3) For simultaneously

identifying the loss rates of several links (on topologies other than multicast or reverse trees), ML estimation
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is computationally intensive; we propose a number of heuristic algorithms, including belief propagation and

subtree decomposition algorithms, and we evaluate their performance through simulation.

The use of network coding at intermediate nodes, in additionto unicast and multicast, has the potential to offer

several benefits for loss tomography:

• increased number of identifiable links (i.e., whose loss probability can be inferred from end-to-end measure-

ments);

• improved tradeoff between number of probes and estimation accuracy. (The intuition behind this benefit is

two-fold: (a) when paths of probes overlap, the probes are coded together thus leading to exactly one probe

crossing each link; and (b) each network coded probe brings more information, as it observes more than one

paths).

• the complexity of selecting probe paths for minimum cost monitoring of a general graph; reduces from NP-hard

to linear;

• the approach gracefully generalizes from trees to general topologies (e.g., having the same identifiability

conditions, using the same estimation algorithm, and avoiding the use of overlapping trees or paths) where its

advantages are amplified.

IV. I NFERRINGONE L INK

In this section, we discuss how to infer the loss rate of a single link. In particular, we present (i) a motivating

example to clarify the concepts, (ii) conditions for identifiability ,and (iii) an efficient way to compute the maximum

likelihood estimator. The discussion of a single link is important for two reasons. First, we expect the most common

use of our framework, in practice, to be the identification ofthe loss rate on a single or a few congested links in

the network6. In the latter case, the congested links can be identified in sequence one-by-one. Second, the intuition

gained here guides the design of schemes for the joint inference of all links in later sections.

A. Motivating Example

Example 1:Consider the five-link topology depicted in Fig. 1. NodesA and B send probes and nodesE and

F receive them. Every link can drop a packet according to an i.i.d. Bernoulli distribution, with probabilityα,

independently of other links. We are interested in estimating these loss probabilities in all links, namelyαAC , αBC ,

αCD, αDE , andαDF .

The traditional multicast-based tomography approach would use two multicast trees rooted at nodesA and B

and ending atE andF . This approach is depicted in Fig. 1-(a) and (b). At each experiment, sourceA sends packet

x1 and sourceB sends packetx2. The receiversE andF infer the link loss rates by keeping track of how many

times they receive packetsx1 andx2. Note that, due to the overlap of the two trees, for each experiment, linksCD,

6This is a well-known fact in the tomography literature. It isoften exploited to set the loss rates of uncongested links tozero and thus reduce

the number of unknowns and improve the identifiability.
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Tree 1

A B

C

D

E F

x1

x1

x1 x1

Tree 2

A B

C

D

E F

x2

x2

x2 x2

Network Coding

A B

C

D

E F

x1 x2

x1 + x2

x1 + x2 x1 + x2

Fig. 1. Link loss monitoring for the basic 5-link topology. NodesA and B are sources,E and F are receivers. Using multicast-based

tomography, the topology can be covered using two multicasttrees 1 and 2. Alternatively, the topology can be covered using coded packets, if

nodeC can add (xor) incoming packets.

DE, andDF are used twice, leading to inefficient bandwidth usage. Moreover, from this set of experiments, we

cannot calculateαCD, and thus edgeCD is not identifiable. Indeed, by observing the outcomes of experiments on

each multicast tree, we cannot distinguish whether packetx1 is dropped on edgeAC or CD; similarly, we cannot

distinguish whether packetx2 is dropped on edgeBC or CD. (Note that if we restricted ourselves to unicast only,

four unicast probes fromA, B to E, F would be needed to cover all five links. Not only would the problems of

identifiability and overlap of probe paths still be present but they would be further amplified.)

If network coding capabilities are available, they can helpalleviate these problems. Assume that the intermediate

nodeC can combine incoming packets before forwarding them to outgoing links. A sends toC a probe packet

with payload that contains the binary stringx1 = [1 0]. Similarly, nodeB sends probe packetx2 = [0 1] to node

C. If nodeC receives onlyx1 or only x2, then it just forwards the received packet to nodeD; if C receives both

packetsx1 andx2, then it creates a new packet, with payload their linear combinationx3 = [1 1], and forwards it

to nodeD; more generally,x3 = x1 ⊕ x2, where⊕ is the bit-wise xor operation. NodeD multicasts the incoming

packetx3 to both outgoing linksDE and DF . The flow of packets in this experiment is shown in Fig. 1(c). In

every experiment, probe packets(x1, x2) are sent fromA, B and may or may not reachE, F , depending on the

state of the links. Observe that with the network coding approach, linkCD becomes identifiable. Moreover, we

have avoided the overlap of probes on link CD during each experiment.

Table I lists the 10 possible observed outcomes, the state oflinks that lead to a particular outcome, the probability

pi, i = 1, ..10 of observing this outcome, and the number of timesni, i = 1, ...10 we observe this outcome in an

sequence ofN independent experiments. The probability of observing an outcome,pi, can be computed from the
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# Is link functioning (1) or not (0)? Original (5-link) topology Prob. #times Reduced Multicast Tree Reduced Reverse

actual probes received at: observations Multicast Tree

AC BC CD DE DF E F Pα E F P MT
α (E, F) P RMT

α

1 Multiple possible events - - p0 n0 0 0 p0 (0, 0) p0

2 1 0 1 0 1 - x1 p1 n1

0 1

p1 + p2 + p3 (1, 0) p1 + p4 + p7

3 0 1 1 0 1 - x2 p2 n2 (0, 1) p2 + p5 + p8

4 1 1 1 0 1 - x1 ⊕ x2 p3 n3 (1, 1) p3 + p6 + p9

5 1 0 1 1 0 x1 - p4 n4

1 0

p4 + p5 + p6 (1, 0) p1 + p4 + p7

6 0 1 1 1 0 x2 - p5 n5 (0, 1) p2 + p5 + p8

7 1 1 1 1 0 x1 ⊕ x2 - p6 n6 (1, 1) p2 + p6 + p9

8 1 0 1 1 1 x1 x1 p7 n7

1 1

p7 + p8 + p9 (1, 0) p1 + p4 + p7

9 0 1 1 1 1 x2 x2 p8 n8 (0, 1) p2 + p5 + p8

10 1 1 1 1 1 x1 ⊕ x2 x1 ⊕ x2 p9 n9 (1, 1) p3 + p6 + p9

TABLE I

THE 10 LEFTMOST COLUMNS OF THIS TABLE REFER TO THE5-LINK TOPOLOGY SHOWN IN FIG.1(C). THEY SHOW THE POSSIBLE PAIRS OF

PROBES COLLECTED(i.e.,THE OBSERVATIONSy ∈ Ω) AT RECEIVERSE AND F , THEIR PROBABILITIESPα , AND THE NUMBER OF TIMESN

EACH OBSERVATION OCCURRED. THESE OBSERVATIONS DEPEND ON THE COMBINATION OF LOSS(0) AND SUCCESS(1) ON THE FIVE

LINKS , WHICH HAPPEN W.P. α. THE REMAINING RIGHTMOST COLUMNS SHOW THE HOW THE SAME PROBES CAN BE INTERPRETED AS

OBSERVATIONS AT THE RECEIVER(S) OF THE REDUCED TOPOLOGIES, NAMELY THE MULTICAST TREE AND THE REVERSE MULTICAST TREE,

SHOWN IN FIG.2; AND THEIR CORRESPONDING PROBABILITIES.

loss probabilitiesα = (α1, ...α5) of the five links (AC,BC, CD, DE and DF respectively).E.g., for outcomes 1-4:

p0 = 1− p1 − ....− p9 = 1− (1− α1α2)(1 − α3)(1− α4α5)

p1 = (1− α1)α2(1 − α3)α4(1− α5)

p2 = α1(1− α2)(1 − α3)α4(1− α5)

p3 = (1− α1)(1− α2)(1− α3)α4(1 − α5)

· · · (6)

and we can write similar expressions for the probabilities of the remaining observations. Thus, we can explicitly

write down the probability distribution of the observations Pα.

In a sequence ofN =
∑10

1 ni independent experiments, the frequency of each eventi is pi ∼
ni

N
. After sending

N independent probes, the log-likelihood function of the observations given the set of parameters{αi}, i = 1...5

is: L(α1, α2, α3, α4, α5) =
∑i=9

i=0 ni · log pi(α) The MLE would compute theα’s that maximizeL(α). �

In general, we may be interested in estimating one of theα variables, some of them, or all five of them. In this

section, we discuss a single link, namely linkCD. Notice that the remaining four links can depict the equivalent

paths connectingCD to the sources and receivers.
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B. Identifiability of One Link

Let’s focus on a single linkCD with loss probabilityαCD. Consider Fig.2 and Fig. 3, which generalize the

motivating example of the previous section. Fig.2(a) depicts link CD together with paths that connect it to the

sources and the receivers. In other words, links other thanCD can be viewed as summarizing paths:e.g.AC could

correspond to a path from A to C, possibly consisting of the concatenation of several links.

For a given a choice of sources and receivers and a coding scheme described in Section V-A, we want to translate

the conditions for identifiability of linkCD in Definition 2 to graph properties of the network. Our intuition is

that a linkCD is identifiable ifC is a source, a coding point or a branching point, andD is a receiver, a coding

point or a branching point. These are the structures depicted in Fig. 3, where we want to identify the link-loss rate

associated with edgeCD and interpret the remaining edges as corresponding to paths; e.g.AC could correspond

to a path from A to C, possibly consisting of the concatenation of several links. The top two cases of Fig. 3 depict

the simple cases where linkC is a source, or linkD is a receiver, the four bottom cases depict the case whereC

andD are coding or branching points.

To formalize this intuition, consider the following two conditions:

• Condition 1: At least one of the following holds:

(a) C ∈ S.

(b) There exist two paths(X1, C) and (X2, C) that do not employ edgeCD with X1, X2 ∈ S.

(c) There exists two paths(X1, C) and (C, X2) that do not employCD with S1 ∈ S, X2 ∈ R.

• Condition 2: At least one of the following holds:

(a) D ∈ R.

(b) There exist two paths(D, X1) and (D, X2) that do not employ edgeCD with X1, X2 ∈ R.

(c) There exists two paths(X1, D) and (D, X2) that do not employCD with X1 ∈ S, X2 ∈ R.

Theorem 4.1:Link CD is identifiable if and only if both Conditions 1 and 2 hold.

Proof: To prove that conditions 1 and 2 are necessary, consider thatcondition 1 is not satisfied. ThenC

can only receive one stream of probe packets, since it is connected to only one source. There exists an edgee

through which this stream of probe packets arrives to nodeC. The link loss rate associated with linkCD cannot be

distinguished from the link loss rate associated with linke. More formally, if αe is the success probability associated

with link e andαCD the loss probability associated with linkCD, then the variablesαe andαCD appear always

together (e.g., in the expression1− (1 − αe)(1 − αCD) in the probability functionPα. Therefore there are many

pairs of values(αe, αCD) that lead to the samePα. According to definition 2, this means that linkCD is not

identifiable. Similar arguments hold for the other conditions and this completes the forward argument.

Next, we prove that conditions 1 and 2 are sufficient for identifying link CD.

First, let us consider Case 1, where Conditions 1(b) and 2(b)are satisfied. The remaining cases are similar and

are discussed at the end of this proof. These conditions meanthat the paths involving linkCD should be as depicted

in Fig. 2(a):AC, BC, DE, DF can be either links or paths from/to the sources/receivers respectively. In the latter
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Fig. 2. Reductions. (a)depicts the real topology based on conditions 1(b) and 2(b).The goal is to identify the loss rate of linkCD. A, B are

sources andE, F receivers.AC, BC, DE,DF can be either links or paths from/to the sources/receivers.In (b), we reduce the real topology

to a multicast tree with three links: “aggregate” linkABCD (which transmitssomesymbol,x1, x2 or x1 ⊕x2, belowD,) and linksDE, DF

(which broadcasts that symbol). In(c), we reduce the real topology to a reverse multicast tree withthree links:AC, BC and “aggregate” link

CDEF (which transmits the symbol coming inCD to at least one receiver). As shown in detail in Table I, the observations in the reduced

topologies are simply unions of disjoint observations in the original topology, and their probabilities are the sum of the probabilities of the

corresponding observations in the original topology.

case (when AC,BC and DE, DF depict paths) the path loss probability can be computed from the loss rates of the

corresponding links. Essentially, Case 1 (also shown in Fig. 3 - 5-links, Case 1) generalizes the motivating example

of the Section 5, where the linksAC, BC, DE, DF are replaced by pathsAC, BC, DE, DF with the same loss

probability.

In Definition 2, and consistently with [2], we defined linkCD as identifiable iff the probability distributionPα

uniquely determines the parametersα7, i.e., iff for α, α′ ∈ [0, 1)|E|, Pα = Pα′ implies α = α′. To establish the

identifiability of CD, we repeatedly apply the identifiability result for a 3-linkmulticast tree (from [2]) and for

a reverse multicast tree (leveraging the reversibility property in Theorem 5.1, Section V-D.2). Before we proceed

with the main argument, we need to describe two reductions from the actual 5-link topology shown in 2(a), to a

multicast tree (MT) and a reverse multicast tree (RMT), shown in 2(b) and (c), respectively.

Reduction to a Multicast Tree (m).Start from the original 5-link topology in Fig. 2(a) with link loss ratesα and

an associated probability distribution of observationsPα. Define the multicast tree in Fig. 2(b) with parametersαm

and associated probability distributionPm
α , in the following way:

αm
DE = αDE , αm

DF = αDF , and1− αm
ABCD = (1− αAC · αBC) · (1− αCD). (7)

In other words, for linksDE andDF we use the same loss probabilities. LinkABCD in Fig. 2(b) summarizes’

7Recall thatα refers to the vector of all loss probabilities, andαe to the loss probability of one particular edgee.
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the operation of linksAC, BC and CD: nodeD receives a packet if (AC or BC function) andCD functions;

therefore the loss probability of linkABCD, αm
ABCD depends on linksAC, BC, CD. Note thatPm

α can be directly

calculated fromPα, since, each event inPm
α is the union of a disjoint subset of events inPm

α and has probability

equal to the sum of probabilities of those events inPα (as indicated in Table I).

The 3-link topology consisting ofABCD and DE, DF is a 3-link multicast tree. Theorems 2 and 3 in [2]

guarantee thatαDE , αDF andαABCD are identifiable in this case. Namely,Pm
α′ = Pm

α implies α′m = αm.

Reduction to a Reverse Multicast Tree (r).Similarly, we can reduce the original topology in Fig. 2(a) with

parametersα and an associated probability distributionPα, to the reverse multicast tree in Fig. 2(c) with parameters

αr and associated probability distributionP r
α, in the following way:

αr
AC = αAC , αr

BC = αBC , and1− αr
CDEF = (1 − αCD) · (1− αDE · αDF ). (8)

That is, the “aggregate” linkCDEF transmits a symbol belowC to at least one receiverE, F with loss probability

depending on the linksCD, DE, DF . This is a reverse multicast tree (with linksAC and BC merging into the

“aggregate” linkCDEF ). The maximum likelihood estimator for the reverse multicast tree has the same functional

form as a 3-link multicast tree, as our reversibility resultestablishes (see Theorem 5.1 in Section V-D.2), and the

same MLE as in [2] can be used. Therefore, using again the mainresult of [2] and similar arguments as in the

previous paragraph, we have thatP r
α̂ = P r

α implies α̂r = αr .

Proving identifiability in the original topology, via contradiction. Consider the 5-link topology in Fig. 2(a) and

assume that there exista,a′ ∈ [0, 1)|E| for which Pα = Pα′ andα′ 6= α′.

Use the multicast tree reduction to map loss ratesα to αm and associated probabilitiesPα to Pm
α . Similarly,

reduce the loss ratesα′ to α′m, and associated probabilitiesPα′ to Pm
α′ . Since Pα = Pα′ , we conclude that

Pm
α = Pm

α′ . Because the topology in Fig. 2(b) is identifiable [2], we getthat αm = α′m. This implies that:

α′
DE = α′m

DE = αm
DE = αDE (9)

α′
DF = α′m

DF = αm
DF = αDF (10)

1− (1− α′
AC · α

′
BC) · (1− α′

CD) = α′
ABCD

m
= αm

ABCD = 1− (1− αAC · αBC) · (1− αCD). (11)

Applying similar arguments for the reduction to a reverse multicast tree we getαr = α′r, and as a result:

α′
AC = α′r

AC = αr
AC = αAC (12)

α′
BC = α′

BC

r
= αr

BC = αBC (13)

1− (1− α′
DE · α

′
DF ) · (1 − α′

CD) = α′
CDEF

r
= αr

CDEF = 1− (1 − αDF · αDE) · (1 − αCD). (14)

From equations (9)-(14) we conclude thatα = α̂, which is a contradiction. Therefore,Pα = Pα′ implies that

α = α′, i.e., identifiability.

The remaining cases (combinations of clauses (a),(b),(c) in Conditions 1 and 2, other than 1(b) and 2(b)) are

shown in Fig. 3. For example Condition 1(a) or 2(a) correspond to the 3-link multicast or reverse multicast tree
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and the MINC MLE can then be used directly on these trees. Conditions 1(c) or 2(c) lead to the Cases 2-4 in Fig.

3) and similar reductions as in Case I can be used to prove identifiability. This completes the proof.

C. Maximum Likelihood Estimator for One Link

The above proof of identifiability also indicates a method for obtaining a maximum likelihood estimate of the

loss rate of a single link. Refer again to Fig. 2(a), where thelink of interest is link CD and the other links

can be interpreted as summarizing the paths from/to the sources. Refer also to Table I and consider the columns

corresponding to the reductions to a multicast and a reversemulticast tree. The procedure for computing the MLE

α̂CD of link CD is summarized in Alg.1.

Algorithm 1 Compute the MLE of one linkCD. (Refer to Fig. 2 and Table I.)
1) Consider the reduction of a 5-link topology to a 3-link multicast tree. Each observation at the leaves of

the multicast tree,{(0, 0), (0, 1), (1, 0), (1, 1)}, is the union of disjoint events in 5-link topology. The log-

likelihood function of the multicast topology is:

Lm(αABCD, αDE , αEF ) = n00 log P (00) + n00 log P (01) + n10 log P (10) + n11 log P (11)

wheren00 = n0, n01 = n1 + n2 + n3, n10 = n4 + n5 + n6, n11 = n7 + n8 + n9 and the corresponding

probabilities areP (00) = p0, P (01) = p1 + p2 + p3, P (10) = p4 + p5 + p6, P (11) = p7 + p8 + p9. Use

the low complexity algorithm in MINC [2] to compute the MLE estimates on this 3-link multicast tree in

namely,α̂m
DE , α̂m

DF , α̂m
ABCD.

2) Similarly, consider the reduction to a reverse multicasttree. The reversibility result in Section V-D.2 establishes

that the MLE of the reverse multicast tree is also a function that can be computed efficiently using MINC

[2]. Use MINC to compute the MLE estimates ofα̂r
AC , α̂r

BC , α̂r
CDEF .

3) Replace the MLEŝαr
AC , α̂r

BC , α̂m
DE , α̂m

DF into the log-likelihood function of the 5-link topology, which now

becomes a function of a single variableαCD. Find αCD that maximizes it:

α̂CD = argmaxαCD
L(αCD|α̂

r
AC , α̂r

BC , α̂m
DE , α̂m

DF ) (15)

Theorem 4.2:The estimatêαCD computed by the above procedure is guaranteed to be the MLE ofαCD in the

original 5-link topology (i.e., the value ofα∗
CD in α∗ = argmaxαL(α)).

Proof: It follows from the following lemmas.

Lemma 4.3:Let α = (αAC , αBC , αCD, αDE , αDF ) and consider the MLE of the 5-link topologŷα = argmaxαL(α).

Let αm = (αABCD, α4, α5) and consider the MLE of the 3-link multicast topologyα̂m = argmaxLm(αm). Then:

α̂DE = α̂m
DE and α̂DF = α̂m

DF .

This lemma says that although the log-likelihood of the 5-link topology and the 3-link multicast are different

functions, they are maximized for the same values of variables (α4, α5). Therefore, we can use the estimates
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Fig. 3. Configurations (i.e., combinations of Conditions 1 and 2) that allow to identify the loss rate of a single link (CD).Recall that

links other than CD, can correspond to paths with the same loss probability. The top of the figure shows a 3-link topology where C is a source

(of a multicast tree) or D is a receiver (of a reverse multicast tree). The trivial case that C is a receiver and D is a tree corresponds to a single

link topology and is omitted here. The bottom of the figure shows a 5-link topology and four configurations (choices of sources and receivers)

where neitherC or D are edge nodes and packets are sent and received at the edge nodesA, B, E andF . Case1 is our familiar motivating

example; Case2 is similar to a single multicast tree rooted atA; Case3 uses sourcesA and E and linear combinations whenever two flows

meet; Case4 does the same for sourcesA, B andE and is equivalent to an inverse multicast tree (with sink atF ).
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α̂m
DE , α̂m

DF obtained in the multicast topology, as the optimal values ofα4, α5 in the original topology. The proof

of the lemma is provided in Appendix A.

Using similar arguments and the reversibility property of Section V-D.2 we can also show that:

Lemma 4.4:Let α = (αAC , αBC , αCD, αDE , αDF ) andα̂ = argmaxαL(α). Let αr = (αAC , αBC , αCDEf ) and

α̂r = argmaxLr(αr). Then:α̂AC = α̂r
AC and α̂AC = α̂r

BC .

Having established that̂αr
AC , α̂r

BC , α̂m
DE , α̂m

DF are the optimal values, we can replace them into the log-likelihood

and maximize for the only remaining variableαCD. Indeed,L(αCD) is concave inαCD and has a unique solution

in [0, 1), which can be found by solving∂L
∂αCD

= 0, which turns out to be a first degree equation in the unknown

αCD. The proof is provided in Appendix A.

Complexity.This computation of the MLE ofαCD is very efficient. In the first two steps, we call MINC [2] twice,

once for the multicast and once for the reverse multicast tree. MINC is known to have low computational complexity,

because it exploits the hierarchy of the tree topology to factorize the probability distribution and recursively calculate

the estimates. Furthermore, in this section, the 3-link multicast and reverse multicast trees are very small, making

this computation even faster. The last step involves solving a first degree equation for one unknown.

V. TREE TOPOLOGIES

In this section, we consider tree topologies, and we describe our design choices in the four subproblems.

A. Probe and Code Design

In tree topologies, there exists a unique path connecting any two nodes. For a network withM sources, we

propose to use probe packets of lengthM bits, where the packet sent by sourcei is simply a vector with value

one only at positioni:

xi = (0, 0, . . . , 1, . . . , 0).

Intermediate nodes perform bitwisexor on their received packets. This very simple design effectively keeps the

presence of each source orthogonal from every other source.This ensures versatility, in the sense that, no matter

which probe packets getxor-ed, they will not cancel each other out. For most practical purposes, this simple probe

design is sufficient: a single IP packet can be up to 1500B (including the headers) and thus can accommodate

roughly 12,000 probe sources (bits). In large networks, onecan also spatially re-use probe packets by allocating

the same probe packet to all sources whose packets do not meet.

B. Identifiability

Our goal in this section is to identifyall links at the same time. It is sufficient to ensure that each link is

identifiable, according to the conditions of Theorem 4.1. This is true in all directed trees where each leaf node is

either source or a receiver, and each intermediate node satisfies the following mild conditions: (i) it has degree at
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least three (which is true in all logical links); (ii) it has in-degree at least one (otherwise, the node should be a

source); and (iii) it has out-degree at least one (otherwisethe node should be a receiver).

Example 2:Table II lists which links are identifiable in the four bottomcases of Fig. 3, if we use our approach

vs. if we use multicast tomography. All four configurations depict the same basic 5-link topology, but they differ in

the choice of sources and receivers. Our approach is able to identify all links for any sets of sources and receivers.

This is not always the case for the multicast tomography. �

Case Network Coding Multicast Probes

1 all links DE, DF

2 all links all links

3 all links AC, CB

4 all links no links

TABLE II

IDENTIFIABLE LINKS IN THE FOUR CASES(DIFFERENT CHOICES OF SOURCES AND RECEIVERS, FOR THE SAME5-LINK TOPOLOGY)

DEPICTED AT THE BOTTOM OFFIG. 3.

C. Routing, Selection of Sources and Receivers

Routing in trees is well defined: there exists a single path that connects a source to a receiver, through which

probes flow. For a tree withL leaf nodes, some leaves act as sourcesS and the remaining leaves act as receivers

R = L\S. Intermediate nodes simply combine (xor) the probes comingon all incoming links and forward (multicast)

to all their outgoing links. This section looks at situations where we may have some freedom in the choice of the

nodes that act as sources and receivers. If such flexibility is not available (as it is assumed in most tomography

work), this step can be skipped. We study the effect of the selection of sources and receivers on estimation accuracy

and we come up with some empirical guidelines for source selection, obtained through a number of examples and

simulation scenarios.

Link loss tomography is essentially a parameter estimationproblem, and different choices of sources and receivers

lead to different estimators. That is, for a fixed number of probes, each topology leads to a different estimation

accuracy; put differently, to achieve the same mean square error (MSE), we may need to use a different number

of probes for each topology.

In Example 2, we saw that with network coding all links are identifiable, while if we use two multicast trees they

are not. In Appendix B.2, we revisit the basic 5-link topology of Fig. 3 and we show that, even though with network

coding links are identifiable for all four cases, the estimation accuracy differs depending on the number of sources

and their relative position in the tree. This idea also applies to larger topologies. For example, in Appendix B.3,

we consider a 9-link tree and we run simulations for different number and location of sources and we summarize

the intuition obtained.
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In general, the optimal selection of the number and locationof sources depends on the network topology, the

values of link-loss rates, and possibly the number of employed probes. This is currently an open problem.

D. Loss Estimation Algorithms

1) Maximum Likelihood Estimation : Ideally, it is desirable to use optimal (maximum likelihood) estimation

to estimate the loss rates from the observations at the receivers. In the special case where the topology is a a tree,

and we can choose one source and several receivers so as to send probes acrossa multicast tree, an efficient ML

estimator (MINC) has been designed in the pioneering paper [2]8. The reversibility property established in Section

V-D.2 below, allows us to use the same efficient estimator on the reverse multicast treeas well (where one leaf is

a receiver, all other leaves are sources and all intermediate nodes performxor).

Furthermore, Alg. 1 presented in Section IV-C provides an efficient way to compute the MLE forany single

link using the MLEs on a multicast and on a reverse multicast tree.In particular, Alg. 1 can be applied to estimate

the loss rates of any link of interest, by focusing at this link and by considering the paths from/to the sources

as equivalent links with the same loss rate, thus leading to the previously studied 5-link topology. This result is

particularly useful in practice, where typically one is interested in inferring the loss rates on a few congested links.

Furthermore, it can be used to infer all links, one at a time.

Beyond these special cases,there is no known computationally efficient algorithm to compute the MLE of all

links at the same time. Therefore, we propose three heuristic estimation algorithms and evaluate their performance

through simulation. The first two (subtree decomposition and minc-like heuristics, in sections V-D.3 and V-D.4,

respectively) are specific to trees, while the third (beliefpropagation, in section V-D.5) also applies to general

graphs.

2) Reversibility – A Structural Property : Consider a tree topologyG = (V, E) with L leaf nodes,S of

which act as sources and the remainingR = L/ S act as receivers of probes. Routing fromS to R is given (e.g.,

determined in the routing subproblem) and defines a direction on every linke ∈ E, along which probes flow).

Definition 3: We call the triplet (G,S,R) a configuration.

We define as dual the configuration that results from reversing the orientation of all links in the network, and

from having theS sources become receivers, while theR receivers act as sources. More formally:

Definition 4: Consider the original configuration(G,S,R). Consider the graphGd = (V, Ed) that has the same

nodes but reversed edges,i.e., e = (i, j) ∈ E iff ed = (j, i) ∈ Ed and loss rateαd
e = αe, associated with every

edgeed ∈ Ed. Select sourcesSd = R and receiversRd = S. We call the(Gd,Sd,Rd) the dual configurationof

(G,S,R).

For example, a multicast tree is the dual configuration of a reverse multicast tree (Cases2 and4 in Fig. 3). In

Appendix B, we show that the dual configurations of Fig. 21(a)and Fig. 22(b) result in the same mean square

8As mentioned in the related work section, the key observation there was the computation of the probabilitiesγ’s at each intermediate node,

proceeding recursively from the leaves to the root. Then theparametersα’s can be computed from theγ’s.
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error bound. In fact, a closer look reveals that not only the values but also the functional forms of these two ML

estimators coincide. The following theorem generalizes this notion to general trees.

Theorem 5.1:Consider a configuration(G,S,R) with observations at the receiversΩ, and probability distribution

Pα = {p(y|α),y ∈ Ω}. Consider its dual configuration(Gd,R,S), with observationsΩd and probability distribution

P d
α . Then, there is a bijection between outcomes and their probabilities in the original(y ∈ Ω, p(y|α) and in the

dual configuration(yd ∈ Ωd, p(yd|α)).

Proof: Let G = (V, E) be the original tree graph, with|E| = n, andGd its dual. In every experiment, there

exist2n possible error events, depending on which subset of the links fail. Observing the outcomes at the receivers

corresponds to observing unions of events, that occur with the corresponding probability (e.g.,as in the example

of Table I). We show that for every observable outcome, that occurs with probabilityp in G, there exists exactly

one observable outcome that occurs with the same probability in Gd and vice-versa. This establishes a bijection.

With every edgee of G, we can associate a set of sourcesS(e) ⊂ V that flow through this edge, and a set of

receiversR(e) ⊂ V that observe the flow throughe. Our main observation is that the pair{S(e), R(e)} uniquely

identifiese, i.e., no other edge has the same pair. In the dual configurationGd, edgee is uniquely identified by

the pair{R(e), S(e)}. If in G edgee fails while all other edges do not, the receiversR(e) will not receive the

contribution in the probe packets of the sourcesS(e). If in Gd edgee fails while all other edges do not, the receivers

S(e) will not receive the contribution in the probe packets of thesourcesR(e). Thus there is a one-to-one mapping

between these events. Using this equivalence, an observable outcome consisting of a union of events can be mapped

to an observable outcome at the reverse tree.

Corollary 5.2: The maximum likelihood estimators for a configuration and its dual have the same functional

form.

Proof: The bijection established above implies that a configuration and its dual have the same set of observable

outcomes, with the same probabilities. Therefore, they have the same likelihood function and therefore the same

maximum likelihood estimator.

We note that this corollary establishes reversibility onlyfor the maximum likelihood estimation. The performance

of suboptimal algorithms may differ when applied to a configuration and its dual.

Application to measuring directional networks. It is also important to note that the notion of dual configurations

doesnot assume that the loss rates in both directions of a link are thesame. Reversibility means that the two ML

estimators for a configuration and its dual are described by the same function; however, the loss parameters we try

to estimate (using the same estimator function) in the two directions may have different values. In fact, consider

a tree with links that have different loss rates in the two directions. In this case, the reversibility property can be

exploited to efficiently monitoring all links and directions. Indeed, it is sufficient to send probes over only two

configurations: the original and its dual.

Corollary 5.3: Consider a treeG with |L| leaves, where each leaf is either a source or a receiver. We are interested

in measuring the loss rates in both directions for all links of the tree. Using network coding saves a factor of|L|

in bandwidth used by probes, compared to the multicast tree approach.
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Proof: Consider a tree configuration with|L| leaves. To measure the link loss rates in both directions forall

edges of the tree, using the multicast approach, we need to use L multicast trees. Indeed, lete = AC be the link

adjacent to leafA ∈ L, we can measureαAC only if A is the root of the multicast tree. Using the network coding

approach, for any choice of sources and receivers, we only need to perform two rounds of measurements: one on

the networkG and one on its dualGd.

This corollary can also be interpreted as a tradeoff in directional measurement. We can either|L|-fold increase the

measurement bandwidth (using multicast probes), or allow intermediate nodes to do linear combinations (network

coding). The former option keeps intermediate nodes simpleat the expense of using extra bandwidth. The latter

option sends exactly one probe per link per experiment, but requires some operations from intermediate nodes.

3) Subtree Decomposition: This algorithm partitions the tree into multicast subtreesseparated by coding points.

Each coding point virtually acts as a receiver for incoming flows and as a source for outgoing flows. As a result,

each subtree will either have a coding point as its source, orwill have at least one coding point as a receiver. In

each subtree, we can then use the MLE estimator (MINC) proposed in [2].

Note that we can only observe packets received at the edge of the network but not at the coding points. However,

we can still infer that information from the observations atthe receivers downstream from the coding point. The

fact that we infer observations of the coding-points from the observations of the leaves is what makes this algorithm

suboptimal, while MINC in each partition is optimal.

Algorithm 2 Subtree Decomposition Algorithm:
Consider a treeG, with sourcesS and receiversR. Each source sends one probe packet. Each receiver receivesat most one probe packet.

• Determine the coding points. These partitionG into |T | ≤ 2S − 1 subtrees.

• For each of the|T | subtrees:

– If the multicast tree is rooted at a coding point:

∗ if any of the descendant receivers receives a probe, use thisexperiment as a measurement on the subtree,

∗ otherwise, w.p.p assume no node inR received a probe packet, and w.p.(1 − p) ignore the experiment.

– If the multicast tree is rooted at a sourceSi:

Consider each coding pointC that act as receiver:

∗ if no descendant receiversC(R) observed a probe, assume, w.p.p, that C received a packet, and w.p.(1 − p), that it did not.

∗ otherwise

· if at least one ofC(R) observed a linear combination ofxi, deduce thatC receivedxi.

We introduce the probabilityp in order to account for the fact that, if none of the receiversin C(R) receives a

packet, this might be attributed to two distinct events: either the coding pointC itself did not receive a packet, orC

did receive a packet, which got subsequently lost in the descendent edges. For example, in Fig.23, consider the tree

rooted atS1, if R2 receivesx1 or x1 +x2 we deduce thatx1 was received at node4. If R2 receivedx2, we deduce

that x1 was not received at node4. If R2 does not receive a probe packet, then, with probability1− p, we assume

that4 did not receive a probe packet. Ideallyp should match the probability thatC correctly received a probe (i.e.,

γC in the terminology of [2]). This depends on the graph structure and on the loss probabilities downstream ofC,
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(S1, R1) (S1, R2) (S2, R2) (S2, R3) (S2, R4)

α1 α2 α3 α4 α5 α6 α7 α8 α9

Fig. 4. Bipartite graph corresponding to the 9-link exampletree in Fig.23. It indicates which edges belong to which observable paths.

and possibly prior information we may have about the link-loss rates.

4) MINC-like Heuristic : For every multicast node, we can use the MINC algorithm described in [2]. For every

coding point, we can use reverse MINC, exploiting the reversibility property that we established in the previous

section.

Similarly to the subtree decomposition, we infer which probes have been received by an interior nodeI from

observations at the downstream receivers. In particular, if at least one receiver downstream ofI has received a probe

with any content (the probe from at least source and potentially contains thexor of probes from multiple sources),

then we can infer thatI received the packet. This can be used to compute the probability γI , in the terminology

of MINC [2]. If no downstream receiver got any probe, we decide w.p.p whether theI received a probe or not,

exactly as in the subtree decomposition. The reductions shown in Figure2 use similar arguments and can serve as

examples.

Different from the subtree decomposition, which estimatesthe α′s locally in each subtree, we use the mapping

from γ′s to α’s provided in MINC [2] to estimate theα′s in the entire graph. This heuristic is optimal for multicast

and reverse multicast configurations, and for configurations that are concatenations of the two, but suboptimal for

any other configuration.

5) Belief Propagation: We propose to use a Belief Propagation (BP) approach, similar to what was proposed

in [26]. Unlike the previous two heuristics, which are specific to tree topologies, the BP approach also applies

to general graphs. The first step in the BP approach is to create the factor graph corresponding to our estimation

problem. Fig. 4 shows the factor graph corresponding to the 9-link tree shown in Fig. 23. This is a bipartite graph:

on one side there are the links (variable nodes), whose loss rates we want to estimate; on the other side there are

the paths (function nodes) that are observed by each received probe. An edge exists in the factor graph between

a link and a path, if the link belongs to this path in the original graph. Note that, in tree topologies, there exists

exactly one path for every source-receiver pair; this is notthe case in general graphs. Once the factor graph is

created from the original graph, each received probe triggers message passing and results in an estimate of link

loss probabilities; these estimates from different probesare then combined using standard methods [26]. The result

is an estimate (̂αe) of the actual loss probability (αe) of every link e ∈ E.
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Fig. 5. A tree with45 links used for simulating the suboptimal estimators.

E. Simulation Results

In this section, we evaluate the heuristic estimators via simulation and we compare them to each other as well as

to multicast-based tomography. The main finding is that using more than one sources helps: using multiple sources

and network coding (even with suboptimal estimation) outperforms a single multicast tree (even with optimal

estimation), thus demonstrating the usefulness of our approach.9

Consider the 45-link topology shown in Fig. 5, where all links have the same loss rateα. We will estimateα

and compare different methods in terms of their estimation accuracy. First, we did simulations forα = 0.3, a large

number of probes, and repeated for many experiments. We looked at the mean square error (MSE) at each link.

The results are shown in Fig. 6 for the following three algorithms:

• a single multicast sourceS1 and maximum likelihood estimation (top plot)

• two sourcesS1, S2, network coding at the middle nodeC, and the MINC-like heuristic (middle plot)

• the same two sources and coding point, with the subtree estimation algorithm (bottom plot).

Notice that in the case of two sources, the 45-link topology is partitioned into 3 subtrees: one rooted atA (where

probex1 flows), another rooted atD (wherex2 flows) and a third one rooted atB (wherex1 + x2 flows).

One can make several observations from this graph. First, using two sources and network coding, even with

suboptimal estimators, performs better than using a singlemulticast source and an ML estimator. Indeed the residual

entropy (which is the metric that summarizes theMSE across all 45 links) is lower for two sources with the MINC-

like (ENT = −317.9) and for the subtree-decomposition (ENT = −314.9) heuristics, than it is for the single

source MLE (ENT = −294.5). This illustrates the benefit of using multiple sources. Second, notice that theMSE

for individual links is smaller in the lower two graphs than in the top graph, for all links except for links43, 44,

9Note that using more than one multicast sources, without network coding, would traditionally require to combine the observations from the

two trees in a suboptimal way [3], thus further degrading theperformance; that is why skip the comparison and compare only against a single

multicast tree and optimal estimation, which has the best performance among baselines.
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Fig. 6. Comparison of one multicast source + MLE vs. two sources + network coding + suboptimal estimation(subtree decomposition and

MINC-like heuristic). We show theMSE for each link in the 45-link topology.

45, for which it is significantly higher. This is no coincidence: links 43, 44, 45 are the middle ones (CA, CB, CD

in Fig. 5). This is due to the fact that we cannot directly observe the packets received at the coding point C and we

have to infer them from observations at the leaves of subtreerooted at B. The performance of the heuristics could

further improve by using the following tweak: we could estimate what probes are received at C, using observations

from leaves not only in the subtree rooted at B, but also from the subtrees rooted of A and D.

The above simulations were for a single value ofα = 0.3. We then exhaustively considered several values

of α (same on all links) andn (the number of probes). The results are shown in Fig. 7. We cansee that, even

with suboptimal estimation, using two sources consistently outperforms a single multicast source, even with MLE

estimation. This is apparent in Fig. 7 where theENT metric for the single source (drawn in bold lines) is consistently

above the other two algorithms.10

In Fig. 8, we compare the MINC-like and the BP algorithms overthe 45-link network, in terms of the ENT

measure, and as a function of the number of probesN . Both algorithms yield better performance (lower ENT

values) as the number of sources increases from one to five. The MINC-like algorithm performs better for the

multicast tree, in which case it coincides with the ML estimator, as well as for the two source tree. However,

belief propagation offers significantly better performance for the case of three and five sources. This trend can be

explained by looking at the number of cycles in the factor graph. A cycle is created in the factor graph of a network

configuration when (1) two different paths have more than onelink in common and (2) a set ofm paths, sayWm,

covers a setEm of m links, with each of the paths inWm containing at least two links inEm. As the factor graph

10Two observations on theENT metric. First, the differences in the value ofENT are significant, although this is not visually obvious;

recall thatENT is defined by taking the sum of thelog of the MSE’s. Second,ENT can be< 0, it is the differential entropy that matters.
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Fig. 7. Comparison of one source with MLE, to two sources withsuboptimal estimation (MINC-like and subtree estimation algorithms) for

the 45-link tree. The comparison summarizes the errorENT over all links.

Fig. 8. Estimation error for two suboptimal algorithms (BP and MINC-like) for the 45-link tree. ENT vs. number of probes.

becomes more and more cyclic, the performance of the sum-product algorithm degrades.

Finally, in Fig. 9, we compare the performance of belief propagation to ML estimation using a single source. We

considered two trees: the 45-link and another, randomly generated 200-link tree. BecauseENT captures the error

over all links, and the two considered topologies have different number of links, we useENTav (defined as the

ENT value divided by the number of network links) for a fair comparison of the two topologies.ENTav for the 45

link tree is better (lower) than that of the 200 link tree for agiven number of probes. We see that the BP algorithm

closely follows the optimal ML estimator, for the range of number of probes and for both trees considered.

VI. GENERAL TOPOLOGIES

In this section, we extent our approach from trees to generaltopologies. The difference in the second case is the

presence of cycles, which poses two challenges: (i) probes may meet more than once and (ii) probes may be trapped

in loops. To deal with these challenges, in this section, we propose (i) an orientation algorithm for undirected graphs

and (ii) probe coding schemes, whose design is more involvedthan in trees.
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Fig. 9. Comparing BP to MLE for the 45-link and 200-link trees. ENTav is ENT divided by the number of links.

The approach followed by prior work on tomography over general networks was to cover the graph with several

multicast [3] and/or unicast probes [4], [6]. This approachfaces several challenges.

(a) The selection of multicast/unicast probes so as to minimize the total bandwidth (cost) is an NP-complete

problem.

(b) Having several probes from different source-destination paths cross the same link leads to bandwidth waste

(especially close to sources or receivers).

(c) Finding an optimal and/or practical method to combine the observations from different multicast/unicast paths

is a non-trivial problem, addressed in a suboptimal way [3].

In contrast, using network coding allows to measure all links with a single probe per link and brings the following

benefits:

(a) It makes the selection of routes so as to minimize cost of linear complexity.

(b) It eliminates the waste of bandwidth by having each link traversed by exactly one probe per experiment;

furthermore, each network coded probe brings more information, as it observes several paths at the same time.

(c) It does not need to combine observations from different experiments for estimation (as all links in the network

are probed exactly once in one pass/experiment).

Because of the aforementioned features, the benefits of the network coding approach compared to traditional

tomographic approaches are even more pronounced in generaltopologies than they were in tree topologies.

In this section, we describe the framework for link loss tomography in general graphs. In particular, we address

the four subproblems mentioned in Section III-B: (1) identifiability of links (2) how to select the routing (3) how

to perform the code design, and (4) what estimation algorithms to use. We evaluate our approach through extensive

simulation on two realistic topologies: a small research network (Abilene), used to illustrate the ideas; and a large

commercial ISP topology (Exodus), used to evaluate the performance in large graphs.
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Fig. 10. Example of a general topology (Abilene). For one source (node 1), we show the orientation of edges, the resultingreceiver (node 9)

and the possible paths from the source to the receiver (P1, ...P7).

A. Identifiability

The identifiability of an edge given a fixed monitoring scheme(for a known topology, set of sources, receivers,

and coding scheme) follows from Theorem 4.1 in Section V. CD is the edge we would like to identify, and we

interpret the edges AC, BC, DE and DF as paths that connect CD to sources and destinations. In particular, we are

able to identify the link loss rate of edge CD from the probes collected at the receivers, if we can reconstruct the

table associated with one of the cases in Fig. 3 (all tables are provided for completeness in Appendix B.1).

More generally, in a general topology, we can identify the set of paths{P} that connect the sources to all

receivers. LetP(e) denote the set of paths that are routed from a source to a receiver, and employ an edgee.

Assume that the receivers can infer which of these paths operated during a given experiment (i.e., non of the links

on the path failed) and which did not, by observing the received probes. We call this propertypath identifiability.

Note that it is not necessary for edge identifiability that the receivers infer the state of all these paths. However, this

is the maximum information that can be extracted from the network to infer link loss rates, and can only increase the

reliability of the inferred estimates. Moreover, knowing the state of the paths is particularly well suited for running

the belief propagation algorithm that we use for estimationof general graphs: indeed, message-passing in the BP

algorithm is triggered by giving the state of the paths as input. Therefore, we will attempt to make the maximum

number of path states distinguishable, by appropriate selection of coding. The following example indicates how the

selection of a coding scheme can allow more or less path states to be distinguishable at a receiver.

Example 3:Consider the network and edge orientation shown in Fig. 10; this is based on a real backbone

topology (Abilene [27]) as it will be discussed in detail in alater section. Node 1 acts as a source and node 9 as

a receiver; assume that all intermediate nodes are only allowed to doxor operations.

Notice that pathsP3 andP1 overlap twice: on edgeE2, and later on edgeE9. If all links in both paths function, the

xor operations “cancel” each other out, resulting in exactly the same observation with both paths being disrupted.
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More specifically, the following two event become indistinguishable: (i) all edges function: node5 receives packet

x2 through edgeE7 and packetx2 + x3 through edgeE6, and sends packetx3 through edgeE9 to the receiver;

(ii) edgesE4 andE7 fail, while all other edges function: node5 only receives packetx3 from its incoming links,

and again sends packetx3 through edgeE9 to the receiver. On the other hand, if we allow coding operations over

a larger alphabet, as in Example 5, these two events result inobserving the distinct packets (i)3x2 + x3 and (ii)

x3 at the receiver. �

B. Routing

First, we discuss the case where we want to estimate the loss rate associated with a specific subset of links,

and we express the corresponding optimization problem as a LP that can be solved in polynomial time. Then, we

examine the practical special case where we are interested in measuring all links, and which will be the main focus

of the rest of the section.

1) Minimum Cost Routing : Consider an arbitrary network topology, a given setS of nodes that can act as

sources, a given setR of nodes that can act as receivers, and a setI of edges whose link loss rate we want to

estimate. Our goal is to estimate the loss-probability for all links in I at the minimum bandwidth cost. That is,

we assume that a costC(e) is associated with each edgee, that is proportional to the flow through the edge. We

are interested in identifying the loss ratepe of edgee ∈ I. Let theρ be the rate of probes crossing that edge, in a

manner consistent with the identifiability conditions for edgee.

Remarks.We note that the flow-based formulation of this problem does not rely on any major assumption. The

accuracy of estimation depends only on the number of probes and not on the rate of the probe flows. The rates

determine how quickly those N packets will be collected.E.g., for smaller rates, it will take longer to collect the

N packets. We also note that that having flows coded together in a edge does not reduce the estimation accuracy.

In fact, a coded packet observes more than paths, thus increasing the estimation accuracy vs. bandwidth tradeoff.

The minimum cost routing problem was shown to be NP-hard, when performing tomography with multicast trees

[28]. Indeed, the problem of even finding a single minimum cost Steiner tree is NP-hard. In contrast, we show here

that if we use network coding, we can find the minimum cost routing in polynomial time. In the case of network

coding, to ensure identifiability, we want to route flows so that the conditions in Theorem 4.1 are satisfied. We will

consider the flow-interpretation of paths in Theorem 4.1,i.e., we will think of each path as a flow of fixed rateρ.

To ensure minimum cost, we want these flows to use the minimum resources possible.

Below we provide a Linear Programming (LP) formulation thatallows to solve the minimum cost cover problem

in polynomial time, provided that we allow intermediate nodes to combine probes. We assume that there are no

capacity constraints on the edges of the network,i.e., we can utilize each edge as much as we want. This is a

realistic assumption, since the rateρ at which we send probe packets would be chosen to be a very small fraction

of the network capacity, and nowhere close to consuming the whole capacity.

Intuition. Following an approach similar to [29], we introduce conceptual flows that can share a link without

contending for the link capacity. We associate with each such edgeei ∈ I one such conceptual flowf i. We would
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like eachf i to bring probe packets to linkei = uivi ∈ I in a manner consistent with the conditions of Theorem 4.1

for edgeei. We allow conceptual flows corresponding to different edgesei to share edges of the graph without

contention, and will measure through a total flowf the utilization of edges by probe packets. We use the condition

f i ≤ f to express the fact that each packet inf might be the linear combination of several packets of conceptual

flows.

Notation.Let C : E → R+ be our cost function that associates a non-negative costC(e) with each edgee. We

are interested in minimizing the total cost
∑

e C(e)f(e), wheref(e) is the flow through edgee. We also denote by

fin(v)/fout(v) the total incoming/outgoing flow of vertexv and withfin(e)/fout(e) the total incoming/outgoing

flow to edgee. The same notation but with the superscripti, e.g.f i
in(u) has the same meaning but specifically for

conceptual flowf i. We connect all nodes inS = {Si} to a common source nodeS through a set of infinite-capacity

and zero-cost edgesES = {SSi}. Similarly, we connect the nodes inR = {Ri} to a common nodeR using an

infinite-capacity and zero-cost set of edgesER = {RiR}.
We summarize the LP program for Minimum Cost Routing below:

min
∑

e

C(e)f(e)

f(e) ≤ ρ ∀e ∈ E − ES − ER

f(e) = ρ ∀e ∈ I

Each conceptual flowf i corresponding toei = uivi satisfies the constraints:

f i(e) ≤ f(e) ∀e ∈ E − ei

f i(e) ≥ 0 ∀e ∈ E

f i
in(S) = 0

f i
out(R) = 0

f i
in(u) = f i

out(u) ∀u ∈ V − {S,R, ui, vi}

f i
in(ui) ≥ ρ /*conceptual flow of rate at leastρ gets into(ui, vi)*/

f i
in(ui) + f i

out(ui) ≥ 3ρ

f i
out(vi) ≥ ρ /* conceptual flow of rate at leastρ gets out of(ui, vi)*/

f i
in(vi) + f i

out(vi) ≥ 3ρ

The idea is to lower-bound the probe ratef(e), in edgee, given the conceptual flows and the conditionf i(e) ≤ f(e).

Solving this LP will give us a set of flows and paths, for each edge in e = (ui, vi). To ensure identifiability, we

need to additionally select a coding scheme, so that, the flows arriving and leaving atui and vi utilize distinct

packets, i.e., from the observable events at the sink, we canreconstruct for edgee the probability of the events of

one of cases 1-4 in identifiability.

In summary, the minimum cost routing problem, so as to identify the loss rates of a predefined set of edges

I, can be solved in linear complexity when network coding is used, while the same problem is NP-hard without

network coding.
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2) Routing (including Source Selection and Link Orientation)for Measuring all Links : If we are interested

in estimating the loss rate ofall identifiable edges of the graph, as opposed to just a restricted setI as in the previous

section, we do not need to solve the above LP. We can simply have each source send a probe and each intermediate

node forward a combination of its incoming packets to its outgoing edges. This simple scheme utilizes each edge

of the graph exactly once per time slot (set of probes sent by the sources) and thus requires the minimum total

bandwidth. Moreover, if an edge is identifiable there existsa coding scheme that allows it be so. Example 3 and

Fig. 10 demonstrate such a situation: the source (node 1) sends one probe per experiment, which gets routed and

coded inside the network, crossing each link exactly once, and eventually arriving at the receiver (node 9).

Challenge I: Cycles.One novel challenge we face in general topologies compared to trees is that probes may

be trapped in cycles. Indeed, if network nodes simply combine their incoming packets and forward them towards

their outgoing links, in a distributed manner and without a global view of the network, then probes may get trapped

in a positive feedback loop (cycle) that consumes network resources without aiding the estimation process. The

following example illustrates such a situation.

Example 4:Consider again the network shown in Fig. 10, but now assume that the orientation of edgesE4 and

E6 were reversed. Thus edgesE4, E5, E7, andE6 create a cycle between nodes2, 4, 5, and3. The probe packets

injected by nodes3 and2 would not exit this loop. �

To address this problem, we could potentially equip intermediate nodes with additional functionalities, such as

removal of packets that have already visited the same node. This is not practical because it requires keeping state

at intermediate nodes; furthermore, such operations wouldneed to be repeated for every set of probes, leading to

increased processing and complexity.

We take a different approach: we remove cycles. Starting from an undirected graphG = (V, E), where the

degree of each node is either one (leaves) or at least three (intermediate nodes), we impose an orientation on the

edges of the graph so as to produce a directed acyclic graph (DAG). Our approach is only possible if we are given

some flexibility to choose nodes that can act as sources or receivers of probe packets, among all nodes, or among

a candidate set of candidate nodes.

There are many algorithms one can use to produce a DAG. Below we propose our own orientation algorithm,

Alg. 3 that, in addition to removing cycles, it also achievessome goals related to our problem. In particular, starting

from a set of nodes that act as sendersS ⊂ V , Alg. 3 selects an orientation of the graph and a set of receivers, so

that (i) the resulting graph is acyclic, (ii) a small number of receiver nodes is selected11, which is desired for the

efficient data collection and (iii) the resulting DAG leads to a factor graph that works well with belief propagation

estimation algorithms. Alg. 3 algorithm guarantees identifiability but is heuristic with respect to criteria (ii) and

(iii); it is important to note, however, that optimizing forcriterion (iii) is an open research problem (as discussed

in Section VI-D).

11Given a set of sources, one can always produce an orientationand a set of receivers that comprise a DAG, which is what Alg. 3does.

Conversely, given a set of receivers one can always produce an orientation and a set of sources that comprise a DAG. If boththe sets of sources

and receivers are fixed, a DAG may not always exist, dependingon the topology.
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Algorithm 3 Orientation Algorithm: Given graphG = (V, E) and sendersS ⊂ V , find receiversR ⊂ V and

orientation∀ e ∈ E, s.t. there are no cycles and all edges are identifiable.

1: for all undirected edgese = (s, v2), s ∈ S do

2: Set outgoing orientations→ v2

3: end for

4: R = {s ∈ S that have incoming oriented edges}

5: V1 = S;

6: V2 = {v2 ∈ V − V1 : s.t. ∃ edge (v1, v2) from v1 ∈ V1}

7: while V2 6= ∅ do

8: Identify and exclude receivers: findr ∈ V2 without unset edges:R := R
⋃
{r}; V2 := V2 − {r}

9: Find nodesU1 ⊂ V2 that have the smallest number of edges with unset orientation.

10: Find nodesU2 ⊂ U1 that have the minimum distance from the sourcesS. Choose one of them:v∗ ∈ U2.

11: Let E∗ = {(v∗, w) ∈ E s.t. w ∈ V − V1}

12: for all undirected edges(v∗, w) ∈ E∗ do

13: set direction tov∗ → w

14: end for

15: UpdateV1 := V1

⋃
{v∗}

16: UpdateV2 := { (non-V1) nodes one edge away from currentV1}

17: end while

We now describe Alg. 3. We sequentially visit the vertices ofthe graph, starting from the source, and selecting

an orientation for all edges of the visited vertex. This orientation can be thought as imposing a partial order on the

vertices of the graph: in a sense, no vertex is visited beforeall its parent vertices in the final directed graph.

Lines 1 − 3 attempt to set all links attached to the sources as outgoing.If we allow an arbitrary selection of

sources we may fall into cases where sources contain links toother sources. In this case, one of the sources will

also need to act as a receiver, i.e., we allow the setS of sources and the set of receiversR to overlap. In the main

part of the algorithm nodes are divided in three sets:

• A set of nodesV1 which we have already visited and have already assigned orientation to all their attached

edges. OriginallyV1 := S.

• A set of nodesV2 which are one edge away from nodes inV1 and are the next candidates to be added toV1.

• The remaining nodes are either receiversR or just nodes not visited yetV3 := V − V1 − V2 −R.

In each step of the algorithm, one nodev∗ ∈ V2 is selected, all its edges that do not have an orientation areset to

outgoing, andv∗ is added toV1 := V1

⋃
{v∗}. Notice that the orientation of edges going fromV1 to V2 is already

set. However, a nodev ∈ V2 may have additional unset edges; if it does not have unset edges, then it becomes a

receiverR := R
⋃
{v}.
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We include two heuristic criteria in the choice ofv∗ ∈ V2: (i) first we look at nodes with the smallest number

of unset edges; (ii) if there are many such nodes, then we lookfor the node with the shortest distance from the

sourcesS; if there are still many such nodes, we pick one of them at random. The rationale behind criterion (i)

is to avoid creating too many receivers. The rationale behind criterion (ii) is to create a set of paths from sources

to receivers with roughly the same path length. The criteria(i) and (ii) are just optimizations that can affect the

estimation performance12. The algorithm continues until all nodes are assigned to either R or V1.

Lemma 6.1:Algorithm 3 produces an acyclic orientation.

Proof: At each step, a node is selected and all its edges which do not have a direction are set as outgoing. This

sequence of selected nodes constitutes a topological ordering. At any point of the algorithm, there are directed paths

from nodes considered earlier to nodes considered later. A cycle would exist if and only if for some nodesvi and

vj : vj is selected at stepsj > i and the direction on the undirected edge(vi, vj) is set tovi ← vj . This is not

possible since if there were an edge(vi, vj) it would have been set at the earlier stepi at the opposite direction

vi → vj . Therefore the resulting directed graph has no cycle. It is possible, however, that there are nodes with no

outgoing edges, which become the receivers.

We note that the key point that enables us to create an acyclicorientation graph for an undirected graph is that

we allow the receivers to be one of the outputs of the algorithm. Notice that a similar algorithm can be formulated

for the symmetric problem, where the receiversR are given and the orientation algorithm produces a (reverse)

orientation and a set of sourcesS, s.t. that there are no cycles. However, if bothS and R are fixed, there is no

orientation algorithm that guarantees the lack of cycles for all graphs.

Lemma 6.2:Algorithm 3 guarantees identifiability of every link in a general undirected graph consisting of

logical links (i.e. with degree≥ 3) and for any choice of sources.

Proof: The proof follows directly from the fact that the degree of each node is greater or equal to three (assuming

logical links only), each edge bringing or removing the sameamount of flow. Thus, either the node is a source or

receiver, or the conditions of Theorem 4.1 and Fig. 3 are satisfied.

C. Code Design

Challenge II: Code Design affects Identifiability. Another novel challenge that we face in general topologies

compared to trees is that simplexor operations do not guarantee path identifiability, as we saw in Example 3. We

deal with this challenge using linear operations over higher field sizes as the following example illustrates.

Example 5:Let us revisit the general topology shown in Fig. 10 and briefly discussed in Example 3. Node1 acts

as a source: for each experiment it sends probesx1, x2 andx3 through its outgoing edges1, 2 and3 respectively.

Nodes2, 4, 6, 10 simply forward their incoming packets to all their outgoinglinks. Node3 performs coding

operations as follows: if within a predetermined time-window it only receives probe packetx2, it simply forwards

12One could use different criteria to rank the candidatev∗, so as to enforce additional desirable properties. Here we used shortest path from

the sources to impose a breath-first progression of the algorithm and paths with roughly the same length. One could also use other criteria to

optimize for the alphabet size and/or the complexity and performance of the estimation algorithms.
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this packet. Similarly if it only receives probe packetx3. If however it receives both packetsx2 andx3, it linearly

combines them to create the packetx2 + x3 that it then sends through its outgoing edgeE6. Nodes5, 7 and 8

follow a similar strategy. If all links are functioning, node 5 sends packet3x2 + x3, node7 sends packetx1 + x2

and finally node8 sends packet3x1 + x2. The receiver node9 observes for each experiment three incoming probe

packets. E.g., if it only observes the incoming packetx3, it knows that all paths from the sourceS have failed,

apart from pathP4. Therefore, it infers that no packets were lost on edgesE3, E6, E9. �

More generally, we are interested in practical code design schemes that allow for identifiability of all edges in

general topologies. We will achieve this goal by designing for path identifiability, which is a different condition. In

particular, we are interested in coding schemes that allow us to identify the maximum number of path states. This

can be achieved by mapping the failure of each subset of pathsto a distinct probe observed at the receivers. For

this to be possible (i) the alphabet size must be sufficientlylarge and (ii) the coding coefficients must be carefully

assigned to edges.

Recall that receiver nodes only have incoming edges. LeteR be an edge adjacent to a receiverR andP (eR) be

the set of paths that connect all source nodes to receiverR, and haveeR as their last edge. We say that a probe

coding scheme allows maximum path identifiability if it allows the receiverR, by observing the received probes

from edgeeR at a given experiment, to determine which of theP (eR) paths have been functioning during this

experiment and which not.

1) Alphabet Size:There is a tradeoff between the field size and path identifiability. On one hand, we want a

small field size mainly for low computation (to do linear operations at intermediate nodes) and secondarily for

bandwidth efficiency (to use a few bits that can fit in a single probe packet). In practice, the latter is not a major

problem, because for each probe we can allocate as many bits as the maximum IP packet size which is quite large

in the Internet.13 However, for computation purposes, it is still important that we keep the field size as small as

possible. On the other hand, a larger field size makes easier to achieve path identifiability.

For maximum path identifiability, there is the following loose lower bound on the required alphabet size.

Lemma 6.3:Let G = (V, E) be acyclic and letPm denote the maximum number of paths sharing an incoming

edge of any receiverR, i.e.,Pm = maxeR
P (eR). Then the alphabet size must be greater or equal tologPm.

Proof: Assume that one of thePm paths is functioning while all the others are not. Since two paths cannot

overlap in all edges, there exists a set of edge failures suchthat this event occurs. For the receiver to determine

which of thePm paths function and which fail, it needs to receive at leastPm distinct values. Essentially, the

field size should be large enough to allow for distinguishingamong all possible paths arriving at each receiver.

Therefore, we need an alphabet sizeq ≥ Pm.

What the above lemma essentially counts is the number of distinct values that we need to be to able to distinguish.

This can be achieved using either scalar network coding overa finite fieldFq of sizeq, or using vector linear coding

13The MTU (maximum transmission unit) on the Internet is at least 575 Bytes (4800 bits) and up to 1500 bytes (1200bits), including headers.

However, in simulation of realistic topologies, we did not need to use more 18 bits.
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with vectors of appropriate length.E.g.,see in [23] for an application to the multicast scenario, where scalar network

coding over a finite field of sizeq was treated as equivalent to vector network coding over the space of binary

vectors of lengthlog q.

The reader will immediately notice that there is an exponential number of paths and failure patterns. We would

like to note that this is not unique to our work, but inherent to tomography problems that try to distinguish

between exponentially large number of configurations,e.g.,transfer matrices and their failure patterns in the passive

tomography [17], [18]. Even in that case, simulations of large topologies, such as Exodus, showed that a moderate

field size is sufficient in practice. However, in our case of active tomography, a potentially large alphabet size is

needed only if one insists to infer the loss rates onall links simultaneously. In practice, one can infer the loss rates

on links one-by-one, by carefully selecting the probes and measuring only the corresponding paths, thus creating

the 5-“link” motivating example, wherexor operations are sufficient.

2) Code Design:Having a large alphabet size is necessary but not sufficient to guarantee path identifiability.

We also need to assign coefficients{ci} so that the failure of every subset of paths leads to a distinct observable

outcome (received probe content). Here we discusses how to select these coefficients.

Consider a particular incoming edgeeR to a receiverR and letn be the number of paths arriving to this edge

from sourceS. Consider one specific pathi that connects sourceS to R via edgesei1 , ei2 , ...eR. The contribution

Pi from pathi to the observed probe is what we call apath monomial, i.e., the product of coefficients on all edges

across the path and of probeXS sent by sourceS:

Pi = ci1 · ci2 ... · cR · XS

For simplicity, we usePi to denote both a path and the corresponding path monomial. Note that, each path consists

of a distinct subset of edges; as a result, no path monomial isa factor of any other path monomial. We can collect

all the monomialsPi in a column vector~PeR
= (P1, P2, . . . Pn).

If all paths arriving to edgeeR are working (no link fails), the received probe at that edge is the summation of

the contributions~P = (P1, P2...Pn) from all n paths:

Probe received througheR (when no loss)= P1 + P2 + ....Pn

In practice, however, any subset of thesen paths may fail due to loss on some links and the received probebecomes

the summation of the subset of paths that did not fail. Let~X = (x1, x2, ..xn) be the vector indicating which paths

failed: xk = 0 if path k failed and1 otherwise. Therefore, the probe received througheR, in the case of loss, is

Probe received througheR (when loss)= ~X · ~P =

n∑

k=1

xk · Pk,

where ~X is the indicator vector corresponding to the loss pattern, i.e., has entry zero if a path fails, and one

otherwise. The vector~X can take2n possible values; let~Xi denote theith possible value,i = 0, ...2n − 1. to

guarantee identifiability, no two subsets,i, j of failed paths should lead to the same observed probe:~Xi · ~P 6= ~Xj · ~P .

Therefore, a successful code design should lead to2n distinct probes, one corresponding to a different subset of

paths failing. In other words, to guarantee identifiability, the coefficients{ce}e∈E assigned to edgesE should be
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such that: ~Xi · ~P − ~Xj · ~P 6= 0, ∀ i, j = 0, ...2n−1 We can write all these constraints together as one:

∏

i,j=0,...2n−1

( ~Xi · ~PeR
− ~Xj · ~PeR

) 6= 0 (16)

Since eachPi = ci1 · ci2 ... · cR · XS is a monomial, with variables the coding coefficients{ce}e∈E , the left hand

side in Eq.(16) is a multivariate polynomialf(c1, c2, ...c|E|) with degree in each variable at mostd ≤ 2n.

Lemma 6.4:The multivariate polynomialf(c1, c2, ...c|E|) at the left of Eq.(16) is not identically zero.

Proof: The “grand” polynomial is not identically zero because eachfactor in the product( ~Xi · ~PeR
− ~Xj · ~PeR

) is

a nonzero polynomial in{ci}. Indeed,~Xi and ~Xj differ in at least one position, sayk, corresponding to a monomial

Pk. Consider the following assignment for the variables{ci}. Assign to all the variables in this monomial a value

equal to one. Assign to al other variables{ci} a value of zero. Since no monomial is a factor of any other monomial,

this implies that the vector~PeR
takes value one at positionk, and zero everywhere else. Thus, this assignment

results in a non-zero evaluation for the polynomial( ~Xi · ~PeR
− ~Xj · ~PeR

), and, as a result, this cannot be identically

zero.

Up to now, we have considered paths that employ the same incoming edge. We can repeat exactly the same

procedure for all incoming edges, and generate, for each such edge, a polynomial in the variables{ci}. Alternatively,

we could also find these polynomials by calculating the transfer matrix between the sources and the specific receiver

node using the state-space representation of the network and the algebraic tools developed in [30]. Either way, the

code design consists of finding values for the variables{ci} so that the product of all polynomials,f , evaluates to a

nonzero value. There are several different ways to find such assignments, extensively studied in the network coding

literature,e.g.,[31]–[33]. One way to select the coefficients is randomly, and this is the approach we follow in the

simulations. In that case, it is well-known that we can make the probability thatf(c1, c2, ...c|E|) = 0 arbitrarily

small, by selecting the coefficients randomly over a large enough field14.

Deterministic Operation. We emphasize that although the selection of coefficients maybe selected randomly

(at setup time), the operation of intermediate nodes (at run-time) is deterministic. At setup time, we select the

coefficients and we verify the identifiability conditions, and select new coefficients if needed for the conditions to

be met. After the selection is finalized, we learn the coefficients and use the same ones at each time slot. Learning

the coefficients is important in order to be able to infer the state of the paths and links.

State Table and Complexity Issues.Once the coefficients are randomly selected, we need to checkwhether the

constraints summarized in Eq.(16) are indeed satisfied. If they are satisfied, the code design guarantees identifiability;

if they are not satisfied, then we can make another random selection and check again. One could also start from a

small field size and increase it after a number of failed trials.

The evaluation of Eq.(16) above requires to check an exponential number of constraints, up to2n where n is the

number of paths for a triplet (source, receiver, edge at receiver). Because the current orientation algorithm does not

14From the Schwartz-Zippel Lemma [31], which has been instrumental for network coding [33], we know the following. Iff(c1, c2, ...c|E|)

is a non-trivially zero polynomial with degree at mostd in each variable, and we choose{ce}e∈E ) uniformly at random inFq with q > d,

then the probability thatf(c1, c2, ...c|E|) = 0 is at most1 − (1 − d
q
)
|E|

.
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Algorithm 4 Deduce State of the Paths from Observations
for all S ∈ Senders do

for all R ∈ Receivers do

for all incoming linksER do

Map the observed probe to the state of all paths fromS to R coming through linkeR

end for

end for

end for

exclude any edges in the process of building the DAG, we mightend up with a large number of paths depending

on the connectivity of the topology and the selection of the sources15. This motivated us to look into more practical

approaches16. Even putting aside the exponential number of paths, for a moment, the problem is essentially a subset

sum: we receive a symbol at a receiver and we would like to knowwhich combinations of non-failed paths add up

to this number. This is a well-known NP-hard problem.

This being said, we do not expect this to be a source of high complexity in practice for several reasons. First, the

algorithm that maps the received symbol to a state of paths can be run offline and the table can be computed and

stored. All we need to do every time we receive a symbol is justa table lookup, which is inexpensive (O(1)). In

other words, we incur setup complexity once in the beginningbut not during run time. Second, this design is only

necessary if one wants to inferall links at the same time, which may be an overkill in practice. The most typical

use of our framework in practice will be for inferring the loss rates of a few congested specific links of interest17.

In that case, we do not need to keep track of the state of all paths. E.g., if we just want to infer the loss rate of a

single link, we only need a basic 5-link topology, which results in a small table .

D. Loss Estimation using Belief Propagation

For our approach to be useful in practice, we need to employ a low complexity algorithm that allows to quickly

estimate the loss rate on every link from all the observations at the receiver. Because MLE is quite involved

15E.g., for the Abilene topology shown in Fig. 10, with 1 source, there were at most three paths per(er , S, R) triplet, but for the larger

Exodus topology (described in Section VI-E) with 5 sources,the average and maximum number of paths per triplet was9 and25 respectively

(for a specific selections of sources in both topologies).

16For example, if we are willing to accept less than 100% path identifiability, we can randomly assign coefficients. withoutchecking for

identifiability conditions. From the observed probes at thereceivers, we then infer the subset of paths that failed by looking up a table which

is pre-computed by solving a subset sum problem. If we identify one or more subsets of paths that when failing lead to the same observed

probe, we can use a heuristic, i.e. pick one of the candidate subsets, their union or intersection. We then feed the state of the paths to the BP

estimation algorithm. This is the approach we follow in the simulation section.

17This is a well-known fact in the tomography literature, and it is often exploited to set the loss rates of uncongested links to zero and thus

reduce the number of unknowns and improve the identifiability.
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Fig. 11. Factor graph corresponding to the Abilene graph (shown in Fig.10). It maps the 15 links to the 7 observable paths at the single

receiver (9). It is used for the belief propagation estimation algorithm.

for general graphs, especially large ones, we use a suboptimal algorithm instead; in particular, we use the Belief

Propagation (BP) approach that we also used for trees, see section V-D.5.

There are two steps involved in the algorithm for each round of received probes. First, from the observations we

need to deduce the state of the paths traversed by these probes, as described in Algorithm 4. The second step is to

use the Belief-Propagation (BP) algorithm, to approximateMaximum Likelihood (ML) estimation. Once we know

which paths work and which failed in this round, we feed this information into the factor graph, which triggers

iterations and leads to the estimate of the loss rate. Similarly to trees, the factor graph is again a bipartite graph,

between links and paths containing these paths. For example, Fig. 11 shows the bipartite graph corresponding to

the Abilene topology of Fig. 10, which we have been discussing in all the examples in this section.

The main difference in the general graphs compared to the trees is that there are multiple (instead of exactly

one) paths between a source and a receiver and has two implications. The first implication is that the design of the

coding scheme must allow to deduce the state of these multiple paths between a source, receiver and an incoming

edge at the receiver(S, R, eR); this has been extensively discussed in the previous section on code design. The

second implication is that there are more cycles in the factor graph of a general graph, which affects the estimation

accuracy of the BP algorithm.

In general, the performance of the BP algorithm depends on the properties of the factor graph. Several problems

have been identified in the BP literature depending on the existence of cycles, the ratio of factors vs. variables

(e.g. links per path) and other structural properties ( stopping sets, trapping sets, diameter). Fixing such BP-specific

problems are outside the scope of this paper and is a researchtopic on its own. However, we did address two of the

aforementioned problems, using existing proposals from the BP literature. First, for performance enhancement in

the presence of cycles in the factor graph, we used a modification of the standard BP, similar to what was proposed

in the context of error correcting codes [34]. The idea is to to combat the overestimation of beliefs by introducing a
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multiplicative correction factorα < 1 for messages passing between variables (links) and factors(paths)18. Second,

we design the orientation algorithm to traverse the actual topology in a breadth-first manner in order to produce

short paths and thus small ratio of links per path in the factor graph, which has a good effect on the BP performance.

More generally, we note that the properties of the factor graph depend on the orientation algorithm. One could

optimize the orientation algorithm to achieve desired properties of the factor graph. In this paper, we have not done

modifications other than the two mentioned above because (i)the overall estimation worked well in all the practical

cases we tried and (ii) the design of a factor graph for betterBP performance is a research topic on its own and

outside the scope of this work.

E. Simulation Results

We now present extensive simulation results over two realistic topologies.

1) Network Topologies:We used two realistic topologies for our simulation, namelythe backbones of Abilene

and Exodus shown in Fig. 12. Abilene is a high-speed researchnetwork operating in the US and information about

its backbone is available online [27]. Exodus is a large commercial ISP, whose backbone map was inferred by the

Rocketfuel project [37]. Both topologies were pre-processed to create logical topologies that have degree at least 3.

For Exodus, nodes with degree2 were merged to create a logical link between the neighbors ofthese nodes while

nodes with degree 1 were filtered; the resulting logical topology contains48 nodes and105 links. For the Abilene

topology, due to its small size, in addition to some links in tandem merged, more links were added; the modified

topology comprises of10 nodes and15 links, and is the one shown in Fig. 10 and used as an example of ageneral

topology throughout this section VI.

For all simulations the link losses on different links are assumed independent, and may take large values as they

reflect losses on logical links, comprising of cascades of physical links, as well as events related to congestion

control within the network.

2) Results on the Orientation Algorithm:In Fig. 13, we consider the Exodus topology and we run the orientation

algorithm for all possible placements of one and two sources; we call each placement an “instance”. We are interested

in the following properties of the orientation produced by Alg. 3:

• the number of receivers: a small number allows for local collection of probes and easier coordination.

• the number of distinct paths per receiver: this relates to the alphabet size and it is also desired to be small.

• the number of paths per link and links per path: these affect the performance of the belief propagation algorithm.

Fig. 13 shows the above four metrics, sorting the instances first in increasing number of receivers and then in

increasing paths/receiver. The following observations can be made. First, the number of receivers produced by our

18In the same way, we could also use an additive correction factor instead. Making those factors adaptive could give even better results. In the

same paper [34], additional modifications of the factor graph (junction tree algorithm, and generalized belief propagation) to deal with cycles

have been proposed, which we did not implement in this paper.Other possible modifications of the BP include: [35], a multistage iterative

decoding algorithm that combines belief propagation with ordered statistic decoding reaches close to the performanceof MLE although with a

higher complexity than BP; and [36], which uses a probabilistic schedule for message passing between variable nodes andcheck nodes in the

factor graph instead of simple message flooding at every iteration.
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Fig. 12. Topologies used in simulation. (a) Top: Abilene Backbone Topology (small research network). (b) Bottom: Exodus POP Topology

(large ISP).
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Fig. 13. Running the Orientation Algorithm on the Exodus topology.

orientation algorithm is indeed very small, as desired. Second the number of links per path is almost constant,

because by construction the orientation algorithm tries tobalance the paths lengths. Third, the paths/receiver and

paths/link metrics, which affect the alphabet size the quality of the estimation can be quite high; however, they

decrease by orders of magnitude for configurations with a fewreceivers; therefore, such configurations should be

chosen in practice. Finally, Table III considers differentchoices of sources in the (modified) Abilene and Exodus

topologies and shows some properties of the produced orientation.
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Topology Srcs-Recvs Coding Links / Paths / Edge Disj.

Points Path Link Paths

Abilene {1}-{9} 4 3.85 1.8 3

{5}-{6} 4 3.71 1.73 3

{9}-{2} 4 4.28 2.0 2

{1,9}-{7} 5 3.25 1.73 4

{3,6}-{9} 5 4 2.13 4

{9,6}-{4} 5 3.25 1.73 4

{1,5,9}-{7} 5 3.2 2.13 5

{1,4,10}-{9} 6 3 2.33 6

Exodus {39,45}-{30,40} 25 9.47 56.47 4

TABLE III

PROPERTIES OF THE ORIENTATION GRAPHS PRODUCED BYALG. 3 FOR DIFFERENT TOPOLOGIES AND CHOICES OF SOURCES.

3) Evaluation of Random Code Design for Real Topologies:In this section, we simulaterandom code design

schemesfor the example topologies of Abilene and Exodus.

Consider a particular incoming edgeeR to a receiverR and letn be the number of paths arriving to this edge

from the same sourceS. If two subsets of paths lead to the same probe, then they are indistinguishable which leads

to loss of identifiability. In practise, since many of the paths for a triplet(eR, S, R) share links between them, we

have much less than2n possible distinct probes. The exact number depends on the connectivity of the topology.

In the simulations, the content of the probe from each subsetof paths is used as a key to a hash table. If two

subsets lead to the same probe, then they will end up into the same bucket. The number of unique buckets into the

hash table gives us the number of different combinations of failed/non-failed paths that are distinguishable from

each other. We normalize this number by the total number of possible distinct subsets and we call this number the

probability of success (path identifiability) of the code design for this particular triplet(eR, S, R).

For theAbilene topology(10 nodes, 15 links), using one source and the orientation algorithm, we obtained a

DAG with one receiver (Fig.10). The maximum number of paths observed for an incoming edge at the receiver was

3. A random choice of coding coefficients over a finite field of size 26 was sufficient to achieve 100% identifiability

of all paths on all edges.

For theExodus topology(48 nodes, 15 links), we select 5 sources, apply the orientation algorithm and get three

receivers. Fig.14 shows the distribution of the number of paths for all triplets(eR, S, R). There are 16 incoming

edges to all three receivers, 44 triplets(eR, S, R) and 377 paths from the sources to the receivers in total; thisleads

to 9 paths on average and 25 paths maximum per triplet(eR, S, R). We visit all nodes in random order and we

assign coefficients from a finite field with increasing size (210 − 218).

In Fig.15, we show the probability of success with regards topath identifiability for five such triplets(eR, S, R),

with 7, 9, 13, 20 and 25 number of paths respectively. The values are averaged over 5 different runs for each field

size value. When we use random code selection over a field of size 216 or larger, we get good results: for a field

size218 or higher we get almost 100% success for all triplets. These are good results for a large realistic topology,
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Fig. 14. Distribution of number of paths for all triplets(eR, S, R) for the Exodus topology
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Fig. 15. Random code design for the Exodus topology. The X-axis shows the size over which over which we choose randomly thecoding

coefficients: finite fields with different size (F
28 −F

218 ). The Y-axis shows the effect on path identifiability (probability of success, defined as

the % of paths in a triplet(S, R, eR) that we can uniquely distinguish from the observed outcome).

such as Exodus, since almost 100% success is achieved with much less bits than the 1500bytes of an IP packet.

Random assignment of coefficients over a set of prime numbersleads to success probability above 98% when we

use up to prime 907 and field size218 for the linear operations.

4) Results on Belief-Propagation (BP) Inference:This section presents results on the quality of the BP estimation

for different assignments of loss rates to the links of the two considered topologies.

In Fig. 16, we consider the Abilene topology with loss rates inversely proportional to the bandwidth of the actual

link; the intuition for this assignement is that links with high bandwidth are less likely to be congested. We see that

the estimation error for each link (MSE) and for all links (ENT) decreases quickly. In Fig. 17 the same topology

is considered but with the sameα on all links: again ENT decreases with the number of probes; as expected, the

larger theα, the slower the convergence; there is not a big difference between having one or two sources in this

case. Fig. 18 shows the estimation error ENT for the Exodus topology with uniformly loss rates. Finally, Table IV

shows the results for different number and placement of sources in the (modified) Abilene topology. Unlike Fig. 17,

Table IV shows that the choice of sources matters and that increasing the number of sources helps in decreasing

ENT .
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Fig. 16. (Modified) Abilene topology. Loss rates (α’s) are different across links: assigned inversely proportional to the bandwidth of the actual

links as reported in [27]. The resulting average loss rate is17%.

0 500 1000 1500 2000 2500 3000
−180

−160

−140

−120

−100

−80

−60

−40

−20

#Probes

E
nt

ro
py

 

 

a=0.1
a=0.2
a=0.3
a=0.4

(a) one source: node 1

0 500 1000 1500 2000 2500 3000
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

#Probes

E
nt

ro
py

 

 

a=0.1
a=0.2
a=0.3
a=0.4

(b) two sources: nodes 1 and 9

Fig. 17. Abilene topology with the sameα on all links.
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Entropy for loss rate same over all links

Srcs-Rcvs a=0.05 a=0.10 a=0.15 a=0.2 a=0.25 a=0.30

{1}-{9} -178.6 -158.8 -147.9 -147.7 -161.6 -163.5

{5}-{6} -178.1 -158.3 -149.6 -154.5 -160.4 -156.5

{9}-{2} -176.1 -163.3 -155.8 -161.2 -166.6 -151.7

{1,9}-{7} -189.3 -173.9 -166.5 -180.3 -171.7 -156.2

{3,6}-{9} -186.2 -176.2 -171.3 -177.8 -166.7 -151.4

{9,6}-{4} -186.9 -174.1 -169.5 -178.7 -173.2 -165.4

{1,5,9}-{7} -199.8 -190.6 -180.9 -184.4 -172.3 -166.9

{1,4,10}-{9} -186.4 -183.9 -178.3 -182.3 -177.3 -173.2
TABLE IV

QUALITY OF ESTIMATION FOR THE (MODIFIED) ABILENE TOPOLOGY AND FOR DIFFERENT CHOICES OF SOURCE(S).

5) NC-Tomography vs. Multicast Tomography:We finally compare the network-coding approach to traditional

multicast tomography for general topologies [3]. In the traditional approach, multiple multicast trees are used to

cover the general topology, and the estimates from the different trees are combined into one, using approaches

proposed in [3].

Fig. 19(a) shows the topology we used to the comparison, which is taken from [3]: Nodes{0, 1, 2, 5} are

sources, nodes{12, ...19} are receivers and all remaining nodes (shown as boxes) are intermediate nodes. When

the traditional approach is used, probes are sent from each of the four source to all receivers using a multicast tree,

an estimate is computed from every tree, and then the four estimates are combined into one using the minimum

variance weighted average [3]. When the network coding approach is used, the same four sources and the same

receivers are used, but probes are combined at intermediatenodes{6, 7}. For a fair comparison, the same belief-

propagation algorithm has been used for estimation over multicast trees and using the network coding approach.

Fig.19(b) shows the performance of both schemes. We see thatthe network coding approach achieves a better error

vs. number of probes tradeoff. The main benefit in this case comes from the fact that the network coding approach

eliminates the overlap of the multicast trees below nodes 6 and 7.

There is of course a wealth of other tomographic techniques that are not simulated here. (For example, we

could cover a general graph with unicast probes, but this would perform worse than using multicast probes.) The

reason is that [3] is directly comparable to our approach andthus highlights the intuitive benefits of network

coding, everything else being equal. Network coding ideas could also be developed for and combined with other

tomographic approaches.

VII. C ONCLUSION

In this paper, we revisited the well-studied and hard problem of link loss tomography using new techniques in

networks equipped with network coding capabilities. We developed a novel framework for estimating the loss rates

of some or all links in this setting. We considered a single link, trees and general topologies. We showed that

network coding capabilities can improve virtually all aspects of loss tomography, including identifiability, routing
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(a) A simulation topology from [3]. Nodes{0, 1, 2, 5} are sources, nodes

{12, ...19} are receivers and all remaining nodes (shown as boxes) are

internal nodes.

(b) Performance of tomography: error (ENT) vs. number of probes. Solid

and dashed lines correspond to

Fig. 19. Comparison of network coding approach to traditional tomography. In both cases the same sources and receivers are used. In the

traditional case, four multicast trees are used and the estimates are combined using methods from [3]. In the network coding case, probes are

combined wherever they meet in the network (nodes 6 and 7).

complexity and the tradeoff between estimation accuracy and bandwidth overhead.
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APPENDIX A: RELATION BETWEEN THE MLE OF THE 5-LINK TOPOLOGY AND THE MLE OF THE REDUCED

3-LINK MULTICAST TREE

This appendix completes the proof of Theorem 4.2.

A.1 The log-likelihood functions for the two topologies

Consider Fig. 2 (a) and (b), which show the reductions between the 5-link and the 3-link multicast. Also consider

Table I, which shows the observations and their corresponding probabilities, in both topologies. The union of many

disjoint events in the original 5-link topology results in asingle observation in the multicast tree. For example,

observation(0, 1) in the reduced multicast tree means that E receiving nothingand F receiving any symbol (x1,

x2 or x1 + x2), which happens w.p.P (01) = p1 + p2 + p3. For brevity, we will use the following notation in this

appendix:αAC = α1, αBC = α2, αCD = α3, αDE = α4, αDF = α5 andα = (α1, ...α5).

The log-likelihood function of the 5-link original topology is

L(α1, α2, α3, α4, α5) =

i=9∑

i=0

ni · log pi(α) (17)

where the probabilitypi(α) of each eventi can be written explicitly as a function ofα:

p0 = 1− p1 − ....− p9 = 1− (1− α1α2)(1 − α3)(1− α4α5) (18)

p1 = (1− α1)α2(1 − α3)α4(1− α5) (19)

p2 = α1(1 − α2)(1 − α3)α4(1− α5) (20)

p3 = (1 − α1)(1− α2)(1− α3)α4(1 − α5) (21)

· · · (22)

p9 = (1− α1)(1 − α2)(1 − α3)(1 − α4)(1− α5) (23)
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The MLE is a solution of the system of the following five equations:

∂L

∂αi

= 0, i = 1, ..5 (24)

The log-likelihood function of the 3-link multicast topology is

Lm(αABCD, α4, α5) = n00logP (00) + n01logP (01) + n10logP (10) + n11logP (11) (25)

wheren00 = n0, n01 = n1 +n2 +n3, n10 = n4 +n5 +n6, n11 = n7 +n8 +n9, and the corresponding probabilities

are eventually also functions ofα:

P00 =p0 = · · · =α3 + (1− α3)(α1α2 + α4α5 − α1α2α4α5) = αm
ABCD + (1− αm

ABCD)α4α5 (26)

P01 =p1 + p2 + p3 = · · · =(1− α1α2)(1− α3)α4(1 − α5) = (1− αm
ABCD)α4(1− α5) (27)

P10 =p4 + p5 + p6 = · · · =(1− αm
ABCD)(1 − α4)α5 (28)

P11 =p7 + p8 + p9 = · · · =(1− αm
ABCD)(1 − α4)(1 − α5) (29)

where we used the following definition to simplify the expressions:

1− αm
ABCD = (1− α1α2) · (1− α3) (30)

The MLE for the multicast tree is a solution of the system of the following three equations:

∂Lm

∂α4
= 0,

∂Lm

∂α5
= 0,

∂Lm

∂αABCD

= 0 (31)

A.2. The same values ofα4, α5 maximize bothL and Lm

Our first goal is to show that solving system (31), or solving the system (24), leads to the same values ofα4, α5.

Let us first consider the log-likelihood functionL of the 5-link topology shown in Eq.(17). An inspection of the

probabilities of the events in Eq.(18-23) reveals that the derivatives w.r.t toα4 are non-zero only over one term per

event, which contains eitherα4 or (1− α5):

∂L

∂α4
=

∂logpn0

0

∂α4
+

∑

i=1,2,3

∂

∂α4
logαni

4 +
∑

i=4...9

∂

∂α4
log(1− α4)

ni

=
n0 · (1− α1α2)(1 − α3)α5

p0
+

n1 + n2 + n3

α4
−

n4 + ...n9

1− α4
(32)

Similarly,

∂L

∂α5
=

∂logpn0

0

∂α5
+

∑

i=4,5,6

∂

∂α5
logαni

4 +
∑

i=1,2,3,7,8,9

∂

∂α5
log(1− α5)

ni

=
n0 · (1− α1α2)(1− α3)α4

p0
+

n4 + n5 + n6

α5
−

n1 + n2 + n3 + n7 + n8 + n9

1− α5
(33)
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and

∂L

∂α1
= −

n4 + n5 + n6

1− α1
+

n1 + n2 + n3

α1
−

n7 + n8 + n9

1− α1
+

n0 · α2(1− α3)(1 − α4α5)

p0
(34)

∂L

∂α2
=

n1 + n2 + n3

α2
−

n4 + n5 + n6

1− α2
−

n7 + n8 + n9

1− α2
+

n0 · α1(1− α3)(1− α4α5)

p0
(35)

∂L

∂α3
= −

n1 + n2 + ... + n9

1− α3
+

n0 · (1− α1α2)(1− α4α5)

p0
(36)

Let us now focus on the log-likelihood functionLm of the 3-link multicast, shown in Eq.(25). By inspecting the

probabilities of the events{00, 01, 10, 11} in Eq.(26-29), we can calculate the derivatives:

∂Lm

∂αm
ABCD

= −
n01 + n10 + n11

1− αABCD

+
n00 · (1− α4α5)

p00
(37)

∂Lm

∂α4
=

n00 · (1− αm
ABCD)α5

p00
+

n01

α4
−

n10

1− α4
−

n11

1− α4
(38)

∂Lm

∂α5
=

n00 · (1− αm
ABCD)α4

p00
+

n01

1− α5
−

n10

α4
−

n11

1− α4
(39)

Recall that by the construction of the multicast tree and itsobservations we have:n00 = n0, n01 = n1 + n2 +

n3, n10 = n4 + n5 + n6, n11 = n7 + n8 + n9, 1− αm
ABCD = (1− α1 ·α2) · (1− α3), andp0 = p00. Then, we can

see that equations (34,35,36,32,33) are a subset of equations (38, 39, 37):

• Setting ∂Lm

∂αABCD
= 0 in Eq.(37) is equivalent to setting∂L

∂α3
= 0 Eq.(36) divided by1− α1α2, which is 6= 0

becauseα1, α2 < 1 by assumption.

• Eq.(38) and Eq.(33) are identical thus leading to the same equation: ∂Lm

∂α4
= ∂L

∂α4
= 0.

• Eq.(39) and Eq.(33) are identical thus leading to the same equation: ∂Lm

∂α5

= ∂L
∂α5

= 0.

• The additional two equations (34) and (35) in the 5-link topology allow to identify α1, α2 in the 5-link

topology; in contrast,α1, α2 are not uniquely defined in the 3-link topology, where the only constraint is

1− αm
ABCD = (1 − α1 · α2) · (1− α3).

Therefore, every solution of the system of Eq. (38, 39, 37) (MLE of the multicast tree) is also a solution of

the system of Eq. (34,35,36,32,33) (MLE of the 5-link topology) and vice versa. Furthermore, both topologies are

identifiable (as established in Theorem 4.1 for the 5-link topology, and in [2] for the 3-link multicast tree),i.e.,

each has a unique solution in[0, 1). Therefore, we can use the values ofα4 andα5 computed in the multicast tree,

for the 5-link topology.

A.3. Solving forα3

ConsideringL, as a function of a single variableα3 only, we see from Eq.(36) that:

∂L

∂α3
= −

n1 + n2 + ... + n9

1− α3
+

n0 · (1− α1α2)(1− α4α5)

1− (1 − α1α2)(1 − α3)(1 − α4α5)
(40)

∂2L

∂α2
3

= −
n1 + n2 + ... + n9

(1− α3)2
+

n0(1− α1α2)
2(1 − α4α5)

2

(1 − (1− α1α2)(1− α3)(1 − α4α5))2
(41)

With some algebra on Eq.(41), we can see that

∂2L

∂α2
3

< 0⇐⇒

√
n1 + ... + n9

n0

1

1− α3
> 0
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Received at Is link ok?

B E F AC BC CD DE DF

- - - Multiple possible events

- - x 1 0 1 0 1

- x - 1 0 1 1 0

- x x 1 0 1 1 1

x - - 1 1 0 * *

x - - 1 1 1 0 0

x - x 1 1 1 0 1

x x - 1 1 1 1 0

x x x 1 1 1 1 1
TABLE V

CASE 2

which is true for0 ≤ α3 < 1. Therefore,L is concave inα3. It has a unique solution that can be found by solving

∂L
∂α3

= 0. With some algebra on in Eq.(40) we find the solution to be:

α3 = 1−
1− n0

N

(1− α1α2)(1− α4α5)

whereN = n0 + n1 + ...n9 is the total number of samples. It is easy to check that this solution is in the desired

rangeα3 ∈ [0, 1). Indeed:

α3 < 1⇐⇒ n0 < N

i.e., not all packets are lost which was one of our assumptions. This is a standard assumption in tomography: no

inference can be made without any received probes. Also:

α3 > 0⇐⇒ 1−
n0

N
< (1− α1α2)(1 − α4α5)

This is asymptotically true forα3 < 1: as N −→ ∞, the percentage of packets that arenot lost approaches the

probability:

1−
n0

N
−→ (1− α1α2)(1 − α3)(1 − α4α5) < (1− α1α2)(1 − α4α5)

.

APPENDIX B: THE EFFECT OF THE NUMBER AND LOCATION OF SOURCES

This appendix provides additional details and simulation results on the effect of the number and location of

sources. It extends sections and V-B and V-C.

Appendix B.1: Various configurations for the 5-link topology

Let us consider again the four cases shown in Fig. 3 for the basic 5-link topology. The first case, also shown in

Fig.1, has been discussed in length in Table I and in Section 5. The corresponding tables used for estimation in

cases 2,3 and 4 of Fig.3 are shown for completeness in Tables V, VI and VII.

May 24, 2010 DRAFT



50

Received at Is link ok?

B F AC BC CD DE DF

- - Multiple possible events

- x1 1 0 1 0 1

- x2 1 0 0 1 1

- x2 0 * * 1 1

- x1 ⊕ x2 1 0 1 1 1

x1 - 1 1 0 0 1

x1 - 1 1 * * 0

x1 x1 1 1 1 0 1

x2 x2 1 1 0 1 1

x1 x1 ⊕ x2 1 1 1 1 1
TABLE VI

CASE 3

Received at Is link ok?

F AC BC CD DE DF

- Multiple possible events

x1 1 0 1 0 1

x2 0 1 1 0 1

x3 0 0 1 1 1

x3 * * 0 1 1

x1 ⊕ x2 1 1 1 0 1

x1 ⊕ x3 1 0 1 1 1

x2 ⊕ x3 0 1 1 1 1

x1 ⊕ x2 ⊕ x3 1 1 1 1 1
TABLE VII

CASE 4

Appendix B.2: Simulation Results for the 5-link topology

Consider again the basic 5-link topology of Fig.3 and focus on estimating the middle link CD. Here we show

that, even though with network coding links are identifiablefor all four cases, the estimation accuracy differs.

In Fig. 20 we assume that all5 links haveα = 0.3 and we look at the convergence of the MLE vs. number

of probes forCase 1(using network coding) and forCase 2(multicast probes with sourceA). Fig. 20(a) shows

the estimated value (for one loss realization). Both estimators converge to the true value, with the network coding

being only slightly faster in this scenario.

In Fig.20(b) we plot the mean-squared error of the MLE forCase 1(using network coding) and forCase 2

(multicast) across number of probes. For comparison, we have also plotted the Cramer-Rao bound for linkCD,

which is consistent with the simulation results. For this scenario,Case 1does slightly better thanCase 2but not

by a significant amount. This motivated us to exhaustively compare all four cases in Fig. 3, for all combinations

of loss rates on the5 links.

Fig. 21 plots the Cramer-Rao bound for the four cases as a function of the link-loss probability at the middle

link. The left plot assumes thatα is the same for five links, while the right plot looks at the case where the edge
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Fig. 20. Convergence of the ML estimator for cases 1,2
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Fig. 21. Comparing the 4 cases in Fig. 3 in terms of the lower-bound of variance.

links have fixed loss rate equal to0.5. We observe thatCase 1shows to achieve a lowerMSE bound. Interestingly,

the curves forCase 2(multicast) andCase 4(reverse multicast) coincide. The difference between the performance

of different cases is more evident in the right plot (Fig. 21(b)).

In Fig. 22, we systematically consider possible combinations of loss rates on the 5 links and we show which

case estimates better the middle link. In the left figure, we assume that all edge links have the same loss rate and

observe that for most combinations of(αmiddle, αedge), Case 1(shown in “+”) performs better. In the right plot,

we assume that the middle link is fixed atαCD = 0.8 and thatαAC = αBC = αs,αDE = αDF = αr. Considering

all combinations (αs,αr), each one of the four cases dominates for some scenarios. Aninteresting observation is,

again, the symmetry betweenCase 2(multicast) andCase 4(reverse multicast).

Appendix B.3: Simulation results for a 9-link example

Example 6:To illustrate these concepts we use the tree shown in Fig. 23.We run simulations for three cases: (1)

a multicast tree with the source at node1 (2) a multicast tree with the source at node2 (3) two sources at nodes1
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Fig. 23. A network topology with9 links. The link orientation depicted corresponds to nodes1 and2 acting as sources of probes.

and2 and a coding point at4.19 Simulations results are reported for this 9-link topology (and more extensive for a

larger 45-link topology) in the simulations subsection V-E. Below we only report the intuition obtained from this

exercise. �

First, adding more than one source improves estimation; intuitively, this is because coding points partition the

tree into smaller multicast components. Second, the numberand placement of sources matter. Third, between two

multicast trees with the same number of receivers, better performance is achieved by the tree that is more “balanced”

and has the smallest height.

Elaborating on the first observation, note that in trees, each intermediate node is a vertex cut set. For the example

of Fig. 23, node4 decomposes the tree into three components. If node4 could collect and produce probes, our

estimation problem would be reduced in estimating the link-loss rates in three smaller multicast trees: the first tree

consisting of sourceS1 and receiversR1 and node4, the second tree with sourceS2 and receiver nodes4, R3 and

R4 and the third tree with source node4 and receiverR2. Allowing node4 to xor incoming packets approximates

19For the configuration in Fig. 23, the probes could also get combined in node5 (e.g. depending on link delays or our design). That is,

although the choice of sources and receivers automaticallydetermines the orientation of their adjacent links, there may still exist a choice of

coding points and orientation for the intermediate links.
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this functionality: observing whetherR2 receives a packet that depends onx1 or x2, we can conclude whether node

4 received a packet fromS1 or S2 respectively.

We made some empirical observations by simulating trees. First, one should select a fraction of sources to receivers

that allows to partition the tree into roughly “equal size”subcomponents, where each subcomponent should have

at least2 − 3 receivers. (When links have similar loss rates, “size” refers the number of nodes/links. In general,

“size” should also capture how lossy the links in the subcomponent are, resulting to similar loss probabilities for the

subcomponents.) Second, one should distribute the sourcesin roughly “evenly” along the periphery of the network.
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