
Network Coding-Aware Queue Management for
Unicast Flows over Coded Wireless Networks

Hulya Seferoglu, Athina Markopoulou
EECS Dept, University of California, Irvine

{hseferog, athina}@uci.edu

Abstract—We are interested in unicast flows over wireless
networks with intersession network coding (such as COPE [1]).
TCP flows over coded wireless networks do not fully exploit
network coding opportunities due to their bursty behavior and
to the fact that TCP is agnostic to the underlying network coding.
In this paper, we take the following steps. First, we formulate
congestion control for unicast flows over coded wireless networks
as a network utility maximization problem and we present a
distributed solution. Second, by mimicking the structure of the
optimal solution, we propose a “network-coding aware” queue
management scheme (NCAQM) at intermediate nodes. We make
no changes to TCP or MAC protocols. We demonstrate, via
simulation, that TCP over NCAQM performs significantly better
than TCP over COPE.

Index Terms—Network coding, wireless networks, congestion
control, transport protocols, queue management.

I. INTRODUCTION

Wireless environments lend themselves naturally to network
coding, thanks to the inherent broadcast and overhearing
capabilities. We are particularly interested in wireless mesh
networks with opportunistic network coding, which have been
extensively studied in theory and practice [1], [2]. We consider
unicast flows (particularly TCP, which is the dominant traffic
type today) transmitted on top of such networks.

In this setting, it has been demonstrated that network coding
can significantly increase throughput [1]. However, it has also
been observed [1] that TCP does not exploit the full potential
of the underlying network coding, mainly due to its bursty
behavior. Rate mismatch between flows can significantly re-
duce the coding opportunities, as there may not be enough
packets from different flows at an intermediate node to code
together. One possible solution is to artificially delay packets
at intermediate nodes [3], until more packets arrive and can
be coded together. However, the throughput increases with
small delay (due to more coding opportunities) but decreases
with large delay (which reduces the TCP rate); the optimal
delay depends on the network topology and the background
traffic and also may change over time. We consider the
same problem, but propose a different solution. Because the
mismatch between flow rates is due to the bursty nature of
TCP, the problem can be eliminated by making modifications
to congestion control mechanisms (at the end-points) and/or to
queue management schemes (at intermediate nodes) to make
them network coding-aware.

This work was supported by NSF CAREER grant 0747110 and by AFOSR
MURI award FA9550-09-1-0643

First, we formulate the congestion control problem over
wireless networks with intersession network coding within
the network utility maximization (NUM) framework [4], [5].
We consider that a constructive network coding scheme is
deployed in a wireless mesh network according to some prede-
termined rules, e.g., COPE in [1] for one-hop network coding.
The optimal solution of the NUM problem decomposes into
several parts, each of which has an intuitive interpretation,
namely rate control, queue management, and scheduling.

Second, motivated by the analysis, we explore modifications
to congestion control mechanisms, so as to mimic the optimal
solution of the NUM problem and fully exploit the potential
of network coding. It turns out that the optimal solution
dictates minimal and intuitive implementation changes. We
propose a network coding-aware queue management scheme at
intermediate nodes (NCAQM), which stores coded packets and
drops packets based on both congestion and network coding
information. We note that the queues, which are already used
for network coding, are a natural place to implement such
changes. In contrast, we do not modify TCP or MAC (802.11)
protocols, which enables the practical deployment of our
proposal. Finally, we evaluate our proposal via simulation in
GloMoSim and we show that TCP over the proposed scheme
(NCAQM) outperforms significantly TCP over COPE (e.g., it
doubles the throughput improvement in some scenarios).

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the system model.
Section IV presents the optimization problem and solution.
Section V presents the network coding-aware protocol design.
Section VI presents simulation results and Section VII con-
cludes the paper.

II. OUR WORK IN PERSPECTIVE

Our work relies on COPE [1] to do the underlying network
coding and provide the available coded and uncoded flows
to higher layers. We then seek to optimize the treatment of
these flows at the end-points and/or at intermediate nodes so
as to maximize network coding opportunities. COPE [1] has
also noticed the problem with TCP performance due to rate
mismatch, which motivated this study. As discussed in the
introduction, [3] addressed this problem by delaying packets
to code with others. We propose a different solution via queue
management and congestion control.

In terms of analysis, our NUM formulation is within the
classic framework [5]. Several optimization problems have

already been studied for networks with network coding. In
[7], minimum cost multicast over network coded wireline and
wireless networks was studied. This work was extended for
rate control in [8] for wireline networks. The rate region of
multicast flows when network coding is used is studied in [9],
[10]. Resource allocation problems have also been considered
for intersession and intrasession network coding for unicast
flows. Rate control, routing, and scheduling for generation-
based intrasession network coding over wireless networks is
considered in [11]. Optimal scheduling and optimal routing
for COPE are considered in [12] and [13], respectively. NUM
is used in [14] for end-to-end pairwise intersession network
coding. Energy efficient opportunistic intersession network
coding over wireless is proposed in [15]. Compared to prior
work, we focus on the congestion control problem for multiple
unicast flows over wireless with a given intersession network
coding scheme. The most similar formulation is probably [8]
for intra-session network coding; we consider intersession
network coding for multiple unicast flows.

In terms of implementation, to the best of our knowledge,
our work is the first to take the step from theory (optimization)
to practice (protocol design), specifically for the problem
of congestion control over intersession network coding. We
propose implementation changes, which have a number of
desired features: they are justified and motivated by analysis,
they perform well (double the throughput in simulations), and
they are minimal (only queue management is affected, while
TCP and MAC remain intact). The extended version of this
paper can be found in [20].

III. SYSTEM MODEL

Sources/Flows. Let S be the set of flows between some
source-destination pairs. Each flow s ∈ S is associated with a
rate xs and a utility function Us(xs), which we assume to be
a strictly concave function of xs.

Wireless Network. A hyperarc (i,J) is a collection of links
from node i ∈ N to a non-empty set of next-hop nodes J ⊆
N . A hypergraph H = (N ,A) represents a wireless mesh
network, where N is the set of nodes and A is the set of
hyperarcs. For simplicity, h = (i,J) denotes a hyperarc, h(i)
denotes node i and h(J) denotes node J , i.e., h(i) = i and
h(J) = J . We use these representations interchangeably.

We consider the protocol model of interference [16], ac-
cording to which, each node can either transmit or receive at
the same time and all transmissions in the range of the receiver
are considered as interfering. Given a hypergraph H, we can
construct the conflict graph C = (A, I), whose vertices are
the hyperarcs of H and edges indicate interference between
hyperarcs. A clique Cq ⊆ A consists of several hyperarcs,
at most one of which can transmit simultaneously without
interference.

Network Coding: We assume that intermediate nodes use
COPE [1] for one-hop opportunistic network coding. Each
node i listens all transmissions in its neighborhood, stores
the overheard packets in its virtual buffer, and periodically
advertises the content of its virtual buffer to its neighbors.

Fig. 1. “X topology”. a transmits a flow with rate xa to e and b transmits a
flow with rate xb to d over c. a and b transmit their packets p1 and p2, in two
time slots, and c receives them. Furthermore, d overhears p1 and e overhears
p2, because a− d and b− e are in the same transmission range and they can
overhear each other. In the next time slot, c broadcasts the network coded
packet, p1 ⊕ p2 over hyperarc (c, {d, e}). Since d and e have overheard p1

and p2, they can decode their packets p2 and p1, respectively.

Then, when a node i wants to transmit a packet, it checks or
estimates the contents of the virtual buffer of its neighbors. If
there is a network coding opportunity, the node combines the
relevant packets using simple coding operations (XOR) and
broadcasts the combination to J . Note that it is possible to
construct more than one network code over a hyperarc (i,J).
Let Ki,J be the set of network codes over a hyperarc (i,J).
Let Sk ⊆ S be the set of flows, whose packets are coded
together using code k ∈ Ki,J and broadcast over (i,J).

In this paper, we primarily assume one-hop network coding
based on COPE [1]. However, our formulations are general
enough to also apply to butterfly structures [6], and in general
to multi-hop constructive coding schemes for multiple uni-
casts, as long as the underlying coding scheme is considered
known. We present the multi-hop extensions in [20].

Routing: Each flow s ∈ S follows a single path Ps ⊆ N
from the source to the destination. This path is pre-determined
by a routing protocol, e.g., OLSR or AODV, and given as input
to our problem. However, note that several different hyperarcs
may connect two consecutive nodes along the path. We define
Hs,k

i,J = 1 if s is transmitted through hyperarc (i,J) using
network code k ∈ Ki,J ; and Hs,k

i,J =0, otherwise.

Example 1: The example shown in Fig. 1 illustrates the
problem we consider. Since c can transmit p1 ⊕ p2 in one
time slot, instead of p1, p2 in two time-slots, network coding
has the potential to improve throughput. However, if there is
mismatch between the rates xa, xb of the two flows, c may
not have packets from the two flows to code together at all
times, and thus does not exploit the full potential of network
coding. We confirmed this intuition through simulations in this
example topology. When the buffer size was set to 10 packets
at each node and the bandwidth was 1Mbps for each link,
we observed that 50% of the time, there were no packets
from the two flows at the same time at c to code together.
For smaller queue sizes and larger transmission rates, there
were even fewer coding opportunities. This means that there
is potential for improvement by updating the protocols so as
to mitigate the rate mismatch between TCP flows. This is the
observation that motivates this paper. ¤

IV. OPTIMAL CONGESTION CONTROL

A. Problem Formulation
Our objective is to maximize the total utility function by

optimizing the flow rates xs at sources s ∈ S , their traffic
splitting parameter αs,k

h (following the terminology of [8]) into
network codes k ∈ Kh over hyperarc h at intermediate nodes,
and the percentage of time τh each hyperarc is used:

max
x,α,τ

∑

s∈S
Us(xs)

s.t.
∑

k∈Kh

max
s∈Sk

{Hs,k
h αs,k

h xs} ≤ Rhτh, ∀h ∈ A
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

αs,k
h = 1, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A (1)

The first constraint is the capacity constraint. Hs,k
h αs,k

h xs

indicates the part of flow rate xs allocated to the k-th network
code over hyperarc h. The rate of the k-th network code is
the maximum rate among flows s ∈ Sk coded together in
code k: maxs∈Sk

{Hs,k
h αs,k

h xs} [7]. Different network codes
k ∈ Kh over h share the available capacity Rhτh, where Rh

is the transmission capacity of h; since h is a set of links,
Rh is the minimum: Rh = minj∈h(J){Ri,jξi,j} where Ri,j

is the capacity of link (i, j), and ξi,j is the probability of
successful transmission over link (i, j). The second constraint
is the flow conservation constraint: at every node i on the path
Ps of source s, the sum of αs,k

h over all network codes and
hyperarcs should be equal to 1. Indeed, when a flow enters
a particular node i, it can be transmitted to its next hop j
as part of different network coded and uncoded flows. The
third constraint is due to interference. As mentioned, τh is
the percentage of time h is used. Its sum over all hyperarcs
in a clique should be less than an over-provisioning factor,
γ ≤ 1, because all hypearcs in a clique interfere and should
time-share the medium.

B. Solution
By relaxing the capacity constraint in Eq. (1), we have

L(x, α, τ , q) =
∑

s∈S
Us(xs)−

∑

h∈A
qh

(∑

k∈Kh

max
s∈Sk

{Hs,k
h αs,k

h xs} −Rhτh

)
, (2)

where qh is the Lagrange multiplier, which can be interpreted
as the queue size at hyperarc h, as discussed later. To decom-
pose the Lagrangian, we rewrite maxs∈Sk

{Hs,k
h αs,k

h xs} as
maxms,k

h

∑
s∈Sk

Hs,k
h αs,k

h xsm
s,k
h s.t.

∑
s∈Sk

ms,k
h = 1, where

ms,k
h is a new variable, which we call the dominance indicator.

It indicates whether the source s has the maximum rate among
all flows coded together in the k-th network code, or not. In
the next section, we will see that only the dominant flow in a
network code needs to back-off during congestion.

The Lagrange function in Eq. (2) is not strictly concave in
ms,k

h and this causes oscillation in its solution. We use the

proximal method [18] to eliminate oscillations;

max
m

∑

s∈Sk

(Hs,k
h αs,k

h xsm
s,k
h − c(ms,k

h − µs,k
h)2)

s.t.
∑

s∈Sk

ms,k
h = 1, (3)

where c is a constant and µs,k
h is an artificial variable of the

proximal method [18]. Its value is set to ms,k
h periodically.

Let (ms,k
h)∗ be the solution to this problem.

By rewriting the summation
∑

k∈Kh

∑
s∈Sk

as∑
s∈S

∑
k∈Kh|s∈Sk

, the Lagrange function in Eq. (2)
can be expressed as: L(x, α, τ , q) =

∑
h∈A qhRhτh +∑

s∈S
(
Us(xs)− xs

∑
h∈A

∑
k∈Kh|s∈Sk

qhHs,k
h αs,k

h (ms,k
h)∗

)
.

Now, we can decompose the Lagrangian into the following
intuitive problems: rate control, traffic splitting, scheduling,
and parameter update (queue management).

Rate Control. First, we solve the Lagrangian w.r.t xs:

xs = (U ′
s)
−1

∑

h∈A

∑

k∈Kh|s∈Sk

qhHs,k
h αs,k

h (ms,k
h)∗

 , (4)

where (U ′
s)−1 is the inverse function of the derivative of

Us. If we define ws
h =

∑
k∈Kh|s∈Sk

Hs,k
h αs,k

h (ms,k
h)∗ and

qs
h(i) =

∑
h(J)|h∈A qhws

h, the rate xs can be expressed as
xs = (U ′

s)
−1(

∑
i∈Ps

qs
i), noting that i = h(i).

In the special case where proportional fairness is desired,
Us(xs) = log(xs), ∀s ∈ S , leading to xs =

(∑
i∈Ps

qs
i

)−1
,

i.e., xs is inversely proportional to the total network coded
queue sizes over the path of flows s, which we will be
explained later.

Traffic Splitting. Second, we solve the Lagrangian for αs,k
h :

At each node i along the path (i.e., i ∈ Ps), the traffic splitting
problem can be expressed as

min
α

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

qhHs,k
h (ms,k

h)∗αs,k
h

s.t.
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

αs,k
h = 1, ∀i ∈ Ps (5)

Similar to Eq. (3), we also use the proximal method [18] to
solve the optimization problem in Eq. (5).

Scheduling. Third, we solve the Lagrangian for τh. This
problem is solved for every hyperarc and every clique for the
conflict graphs in the hypergraph.

max
τ

∑

h∈A
qhRhτh s.t.

∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A. (6)

Parameter (Queue Size) Update. We find the La-
grange multipliers (queue sizes) qh, using gradient descent;
qh(t+1) = {qh(t)+ ct[

∑
k∈Kh

∑
s∈Sk

Hs,k
h αs,k

h (ms,k
h)∗xs−

Rhτh]}+. Equivalently;

qh(t + 1) = {qh(t) + ct[
∑

k∈Kh

max
s∈Sk

{Hs,k
h αs,k

h xs} −Rhτh]}+

(7)

where t is the iteration number, ct is a small constant, and the
+ operator makes the Lagrange multipliers positive. qh can be
interpreted as the queue size at hyperarc ∀h ∈ A. Indeed,
in Eq. (7), qh is updated with the difference between the
incoming

∑
k∈Kh

maxs∈Sk
{Hs,k

h αs,k
h xs} and outgoing Rhτh

traffic at h. Therefore, we call qh the hyperarc-queue, or h-
queue for brevity. We confirmed the convergence of qh’s via
numerical calculations as in [20].

V. NETWORK CODING-AWARE IMPLEMENTATION

In the previous section, we saw that the NUM problem
decomposed into Eqs. (4)-(7), each of which has an intuitive
interpretation. In this section, we mimic the properties of
the optimal solution and we propose modifications to the
corresponding protocols to make them network coding-aware.
It turns out that changes limited to queue management at
intermediate nodes are sufficient, while TCP and scheduling
can remain intact without loss in performance. This makes our
proposal well suited for practical deployment.

A. Queue Management at Intermediate Nodes (NCAQM)

1) Summary of Proposed Scheme: We refer to our “Net-
work Coding-Aware Queue Management” scheme as NCAQM.
NCAQM builds on and extends COPE [1]. Its goal is to
interact with TCP congestion control in a way that matches the
rates of TCP flows coded together and thus increases network
coding opportunities. It achieves its goal through the following
changes at intermediate nodes. NCAQM stores coded packets
in the output queue Qi. NCAQM maintains state per hyperarc
queue qh and per network code transmitted over each hyperarc
k ∈ Kh; this is feasible in the setting of wireless mesh
with limited number of flows. During congestion at a node, a
packet is dropped from the flow that has the largest number of
packets, where this number is computed only over h-queues
where this flow is dominant. Essentially, NCAQM is “longest-
flow first” policy, thus balancing the flow lengths, but the
“length” of each flow is calculated so as to take into account
a key feature of inter-session network coding. We note that
intermediate nodes perform already network coding operations
and are a natural place to implement these additional changes.

2) Detailed Description of Proposed Scheme:
Maintaining Queues: A wireless node i maintains a single

physical output queue, Qi, which stores all packets (coded
and uncoded depending on the opportunities) passing through
it. On the other hand, motivated by the fact that Lagrange
multiplier (h-queue), we maintain h-queue virtually for each
hyperarc, which keeps track of packets that are network coded
and broadcast over h. The size of an h-queue is Qh and how
it is determined in practice will be explained later.

Network Coding (Alg. 1): Motivated by the fact that the
incoming traffic in Eq. (7) is the sum of the network coded
flows over h, we code packets when they are inserted to output
queues. If a network coding opportunity does not exist when
the packet arrives at node i, we just store it in Qi in a FIFO
way. Periodically, Alg. 1 runs to check all packets in the queue
for network coding. Let Qi = {p1, p2, ..., pl} where p1 is the

Algorithm 1 Network coding in output queue Qi at node i
1: for m = 1...L do
2: if ∃pm ∈ Qi then
3: for n = (m + 1)...L do
4: if pm ⊕ pn is eligible then
5: pm ← pm ⊕ pn

6: end if
7: end for
8: end if
9: Update Qi

10: end for

Algorithm 2 Packet dropping at node i during congestion
1: Initialization: Φs

i = 0, ∀s ∈ S, S′i = ∅
2: if l > L then
3: for ∀s ∈ S do
4: Calculate Φs

i =
∑

h(J)|h∈AQhw̌s
h

5: end for
6: S′i = arg maxs∈S{Φs

i }
7: Choose a flow s′ ∈ S′i randomly
8: if ∃pn ∈ Qi, n = 1..l, from flow s′ then
9: Drop pn

10: else
11: Drop pl

12: end if
13: end if

first and pl is the last packet in the queue; l ≤ L, where L is
the buffer size, i.e., the maximum number of packets that can
be stored in Qi. First, p1 is picked for network coding. Since
Qi stores network coded packets, p1 may be already a coded.
Independently of whether p1 is network coded or not, it can be
further coded with other packets in the queue beginning from
p2, if the following two conditions are satisfied; (i) the packets
constructing p1 and p2 should be from different flows, and (ii)
p1⊕p2 should be decodable at the next hop of all packets that
construct the network code. If these conditions are satisfied,
we say that the network code is an eligible network code, and
p1 is replaced by p1⊕p2. Then p1⊕p3 is checked for network
coding, etc. After all packets are checked for network coding,
the output queue Qi is updated: (i) the final packet p1 is
stored in the first slot of the output queue, and (ii) the memory
allocated to other packets are freed. Then, the same algorithm
is run for packet p2, etc. When a transmission opportunity
arises, the first packet from the output queue is checked for
network coding again and broadcast over the hyperarc.

Let the number of packets from flow s in node i be Qs
i . Qs

i

captures the difference between the incoming and outgoing
traffic for flow s at node i. Since an h-queue captures the
difference between the incoming and outgoing traffic over a
hyperarc, we calculate its size using the following heuristic:
Qh =

∑
k∈Kh

maxs∈Sk
{Hs,k

h α̌s,k
h Qs

i}, where α̌s,k
h is the

approximate traffic splitting, explained next.
Through numerical calculations, we made the following

observation: each αs,k
h converges to the percentage of time that

packets from flow s are transmitted with the k-th network code
over h at node i. At each packet transmission, we calculate the
probability that a network code k over hyperarc h can be used
for flow s, over a time window. The average over this window

(a) Alice-and-Bob Topology (b) Cross Topology (c) Grid Topology
Fig. 2. Topologies and traffic scenarios used in simulations.

gives an estimate of the traffic splitting parameter, α̌s,k
h .

Packet Dropping (Alg. 2): When a node is congested,
it decides which packet to drop. In order to eliminate the
potential of rate mismatch between flows coded together, we
propose that the node compares the number of all (coded and
uncoded) packets of each flow, in queues where the flow is
dominant (ms,k

h = 1). This is motivated by the optimal rate
control in Eq. (4). Specifically, for each flow s, we calculate
Φs

i =
∑

h(J)|h∈AQhw̌s
h, where w̌s

h =
∑

k∈Kh|s∈Sk
and

Hs,k
h α̌s,k

h m̌s,k
h . Upon congestion, the Φs

i ’s are compared and a
packet from the flow with the largest Φs

i is dropped, preferably
the last uncoded packet. If all packets from the selected flow
are coded, a newcoming packet(s) is dropped instead.

To estimate the dominance indicator m̌s,k
h needed in Alg. 2,

we compute heuristically an estimate m̌s,k
h as follows. If

Hs,k
h α̌s,k

h Qs
i < Hs′,k

h α̌s′,k
h Qs′

i s.t. ∃s′ ∈ Sk − {s}, then
m̌s,k

h = 0. Otherwise, m̌s,k
h = (|Smax

k |)−1 where Smax
k =

{s|s ∈ Sk ∧ Hs,k
h α̌s,k

h Qs
i = max{Hs′,k

h α̌s′,k
h Qs

i | s′ ∈ Sk}}.

B. Rate Control at the Sources

The optimal rate xs is inversely proportional to the sum
of the queue sizes qs

i across all nodes i on the path Ps of
flow s according to Eq. (4) for logarithmic utility (i.e., xs =
(
∑

i∈Ps
qs
i)
−1. qs

i). However, it is impractical to feed back
to the source the full information

∑
i∈Ps

qs
i . Instead, when a

queue is congested, a packet is dropped or marked [4]. The
source uses this binary information as a signal to reduce its
rate, mimicking the inverse relationship. The exact adaptation
of the flow rate depends on the TCP version used. In the
simulations, we used TCP-SACK without any modification.
The only change we propose is the packet dropping scheme
at the queue. TCP still reacts to drops but these drops are
caused according to network coding requirements (Alg. 2).

C. Scheduling

The scheduling part in Eq. (6) has two parts: intra- and
inter-scheduling that determine which packet to transmit from
a node and which node should transmit, respectively. Both
have difficulties in practice. Intra-scheduling causes packet
reordering at TCP receivers. Inter-scheduling requires central-
ized knowledge and it is NP hard and hard to approximate [5].
Given these difficulties and our goal to make minimal changes,
we limit our modifications to the queue management.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the throughput of TCP over our
proposed scheme (NCAQM) in various topologies and traffic
scenarios. We compare it to TCP over the following baseline
schemes: no network coding (noNC), which uses FIFO without
network coding; COPE [1], which stores native packets in
a FIFO and decides which packets to code together at each
transmission opportunity; and the optimal control.

A. Simulation Setup

We used the GloMoSim simulator [19], which is well suited
for wireless. We implemented from scratch the modules for
one-hop network coding over wireless mesh networks (COPE)
as well as for our proposed scheme (NCAQM).

1) Topologies: We simulated four illustrative topologies
shown in Fig. 1 and Fig. 2. In X, Alice-and-Bob (a and b
transmit to each other via the relay c), and cross (a, b and d, e
communicate through the relay c) topologies, c is placed in the
center of a circle with 90m radius over 200m× 200m terrain
and all other nodes are placed around the circle. In the grid
topology nodes are distributed over a 300m × 300m terrain,
divided into 9 cells of equal size. 15 nodes are divided into
sets consisting of 1 or 2 nodes and each set is assigned to a
different cell. If both sender and receiver are in the same cell or
in neighboring cells, there is a direct transmission; otherwise,
a node in a neighboring cell acts as a relay. If there are more
than one neighboring cells, one is chosen at random.

2) MAC: In the MAC layer, we simulated IEEE 802.11
with RTS/CTS enabled and with the modifications proposed
in [1] for network coding.

3) Wireless Channel: We used the two-ray path loss model
and Rayleigh fading (with good link quality) in GloMoSim.

4) TCP Traffic: We consider FTP/TCP traffic on top of
the wireless network. In the Alice-and-Bob, X, and cross
topologies, TCP flows start at random times within the first
5sec and live until the end of the simulation. In the grid
topology, TCP flows arrive according to a Poisson distribution
with average 6 flows per 30sec. The sender and the receiver
of a TCP flow are chosen randomly.

B. Simulation Results

In this section, we present simulation results for the
four topologies. We compare: (i) TCP over NCAQM
(TCP+NCAQM) to (ii) TCP over COPE (TCP+COPE) as

TABLE I
AVERAGE THROUGHPUT IMPROVEMENT COMPARED TO NO-NC.

Optimal TCP+NCAQM TCP+COPE

Alice-and-Bob Topology 33% 27% 12%
Cross Topology 60% 31% 16%

X Topology 33% 22% 10%
Grid Topology - 19% 8%

1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput Improvement

C
um

ul
at

iv
e

F
ra

ct
io

n

TCP+NCAQM
TCP+COPE

(a) CDF

10 15 20 25 30
12

14

16

18

20

22

24

26

28

Buffer Size (number of packets)

P
er

ce
nt

ag
e

of
 im

pr
ov

em
en

t

TCP+NCAQM
TCP+COPE

(b) Throughput improvement
Fig. 3. (a) CDF, buffer size is 10 packets. (b) The effect of buffer size (in #
of packets). Average throughput improvement compared to noNC in several
scenarios over the Alice-and-Bob topology.

well as to (iii) the optimal solution working together with
the optimal queue management in Eq. (7). We report the
average throughput of each scheme as % improvement over
the throughput of the baseline TCP+noNC.

Table I presents the results for the following parameters:
the buffer size at each intermediate node is 10 packets;
the packet size of 1000B; the channel capacity is 1Mbps;
the simulation duration is 1min. The results are averaged
over 10 simulations. The first observation is that our scheme
(TCP+NCAQM) doubles the throughput improvement com-
pared to TCP+COPE in all four topologies. We note that
the buffer size was purposely chosen to be limited to make
network coding opportunities scarce. TCP+NCAQM has two
advantages in this challenging scenario: (i) it stores network
coded, instead of native, packets thus saving buffer and (ii) it
drops packets to increase network coding opportunities. The
second observation is that TCP+NCAQM performs close to the
optimal for the Alice-and-Bob and X topologies. For the cross
topology, there is still a gap due to the very limited buffer size
for 4 flows at the relay (rather than 2 flows in Alice-and-Bob
and X topologies).

Fig. 3(a) shows the cumulative distributed function (CDF)
for the Alice-and-Bob topology, buffer size of 10 packets and
40 simulations. The CDF of TCP+NCAQM is shifted to sig-
nificantly higher throughput levels compared to TCP+COPE.
E.g., TCP+NCAQM improves throughput more than 20% in
more than 90% of the realizations.

Fig. 3(b) shows the throughput improvement vs. buffer
size. When buffer sizes are small, the difference between
TCP+NCAQM and TCP+COPE is significant. The throughput
of TCP+COPE increases when buffer sizes increase, which is
intuitively expected. The problem addressed in this paper was
the mismatch between rates of flows coded together, due to
the bursty nature of TCP, which reduces coding opportunities.
However, when buffer sizes increase, there are more packets
available in queues for coding. Fig. 3(b) demonstrates that our

scheme is particularly beneficial in harsh conditions.

VII. CONCLUSION

In this paper, we showed how to improve the TCP per-
formance over wireless networks with a given intersession
network coding scheme. The key intuition was to eliminate
the rate mismatch between flows that are coded together,
through a synergy of rate control and queue management.
First, we formulated the NUM problem and derived a dis-
tributed solution. Then, we proposed minimal modifications
to queue management (NCAQM) that mimic the structure
of the optimal solution; TCP and MAC protocols remained
intact. Simulation results showed that the proposed scheme
significantly improves TCP performance compared to network
coding-unaware protocols. The extended version of this paper,
including convergence analysis and the extension to multi-hop
network coding, can be found in [20].

REFERENCES

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, J. Crowcroft, “XORs
in the Air: Practical Wireless Network Coding,” IEEE/ACM Trans. on
Networking, Vol. 16, No. 3, pp. 497-510, June 2008.

[2] Y. Wu, P. A. Chou, and S. Y. Kung, “Information exchange in wireless
network coding and physical layer broadcast,” in CISS 2005 in Proc. of
IEEE CISS, Baltimore, MD, March 2005.

[3] Y. Huang, M. Ghaderi, D. Towsley, and W. Gong, “TCP performance in
coded wireless mesh networks,” in Proc. of IEEE SECON 2008.

[4] R. Srikant, “The Mathematics of Internet Congestion Control”,
Birkhauser, 2003.

[5] M. Chiang, S. T. Low, A. R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition: A mathematical theory of network architec-
tures,” Proceedings of the IEEE, vol. 95(1), pp. 255-312, Jan. 2007.

[6] S. Omiwade, R. Zheng, and C. Hua. “Butterflies in the mesh: lightweight
localized wireless network coding,” in Proc. of NetCod, Jan. 2008.

[7] D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” in IEEE ToIT, vol. 52(6), June 2006.

[8] L. Chen, T. Ho, S. Low, M. Chiang, and J. C. Doyle, “Optimization based
rate control for multicast with network coding,” in Proc. of Infocom, 2007.

[9] J. Yuan, Z. Li, W. Yu, and B. Li, “A cross-layer optimization framework
for multi-hop multicast in wireless mesh networks,” in IEEE JSAC,
vol. 24(11), Nov. 2006.

[10] Z. Li, B. Li, and M. Wang, “Optimization models for streaming in
multihop wireless networks,” in Proc. of ICCCN, Honolulu, HI, Aug. 2007.

[11] B. Radunovic, C. Gkantsidis, P. Key, P. Rodriguez, and W. Hu, “An opti-
mal framework for practical multipath routing in wireless mesh networks,”
in Proc. of Infocom, April 2008.

[12] P. Chaporkar and A. Proutiere, “Adaptive network coding and scheduling
for maximizing througput in wireless networks,” in Proc. of ACM Mobi-
com, Montreal, Canada, Sep. 2007.

[13] S. Sengupta, S. Rayanchu, and S. Banarjee, “An Analysis of Wireless
Network Coding for Unicast Sessions: The Case for Coding-Aware Rout-
ing,” in Proc. of Infocom, 2007.

[14] A. Khreishah, C. C. Wang, and N. B. Shroff, “Cross-layer optimization
for wireless multihop networks with pairwise intersession network coding,”
in IEEE JSAC, vol. 27(5), June 2009.

[15] T. Cui, L. Chen, and T. Ho, “Energy Efficient Opportunistic Network
Coding for Wireless Networks,” in Proc. of Infocom, April 2008.

[16] P. Gupta and P. R. Kumar, “The Capacity of Wireless Network,” in IEEE
Trans. on Information Theory, vol. 34(5), pp. 910-917, 2000.

[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options,” RFC 2018, IETF, Oct. 1996.

[18] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and Distributed Computa-
tion: Numerical Methods,” NJ, Prentice Hall, 1989.

[19] GloMoSim Version 2.0 , “Global Mobile Information Systems Simula-
tion Library,” available at http://pcl.cs.ucla.edu/projects/glomosim/.

[20] H. Seferoglu, A. Markopoulou, “Improving the Performance of TCP
over Coded Wireless Networks,” in arXiv:cs.NI:1002.4885, Feb. 2010.

